Analyzing messages with text predictions
Text predictions use natural language processing (NLP), predictive and adaptive analytics, and artificial intelligence to analyze incoming messages in your conversational channels, such as email or chat. Text analytics can help you route work, populate properties in business cases, and respond to users with relevant messages.
The system creates a text prediction automatically for each new channel that you create in App Studio. A link to the text prediction is available on the Behavior tab in the channel configuration.
You can configure and train the models in a text prediction to predict different aspects of emails, chat messages, or voice commands, and then use that information to automate certain tasks in your application:
- Topic
- The general subject or intent of a message, such as a request for service or support. For example, a Pega Intelligent Virtual Assistant (IVA) or an email bot can determine that the topic of an email is a request to cancel a flight ticket, and then open a flight cancellation business case.
- Entities
- Keywords and phrases in a message that the system can assign to specific categories, such as people, locations, dates, organizations, and postal codes. You can configure an IVA or an email bot to automatically assign the detected entities to properties in a business case.
- Sentiment
- The attitude or opinion that a user expresses in a message: positive, neutral, or negative. An email bot can detect negative sentiments in an email, and then escalate the issue by automatically forwarding that information to a customer service representative.
- Language
- The language of a message. An email bot can detect the language of an email, and then automatically respond to the user in that language.
The following diagram shows the high-level workflow for configuring a text prediction:
- Add topics that you want to detect in incoming messages in your conversational
channels:
- To create topics, see Creating topics in text predictions.
- To import topics by using a topic template, see Importing topics to text predictions.
- Add entities that you want to detect in incoming messages in your
conversational channels.For more information, see Adding entities to text predictions.
- Add, review, and approve the training data for topics, sentiments, and
entities.For more information, see Reviewing and adding training data for text predictions.
- Optional: Add models to the text prediction and configure their settings.For more information, see Managing models in text predictions.
- Optional: Modify the general settings of your text prediction and manage its
models.For more information, see Configuring general text prediction settings.
- Rebuild the models in the text prediction.For more information, see Building models in text predictions.
- Test the text prediction.For more information, see Testing text predictions.
- Deploy the text prediction to the Production environment.For more information, see Moving applications between systems.
- In the production environment, monitor the performance of your text prediction
to identify opportunities to improve the configuration of text analytics for
your conversational channels.For more information, see Monitoring text predictions.
Configuring outcomes in a non-production environment
Building models and testing predictions
Deploying to Production
Monitoring text predictions
Previous topic Out-of-the-box text analytics models Next topic Creating topics in text predictions