Artificial intelligence-based opportunity insights
Pega Sales Automation uses decisioning capabilities to provide predictive insights for opportunities.
Opportunity insights are displayed in the opportunity record for each opportunity. The Opportunity insights widget is dynamic and responds to changes, such as stage changes and changes in customer activity or contact growth.
Review the following sections:
- Opportunity insights workflow overview
- Historical data and adaptive learning
- Opportunity insights architecture
Pega Sales Automation uses a single strategy to drive the insights that are displayed on the dashboard widget and to take periodic predictor snapshots. The strategy runs all three model types (move to next stage, opportunity win, and win date), distinguishing them by using labels that are mapped to the issue and group hierarchy. For the opportunity win and move to next stage models, the strategy also evaluates a model without predictors (opportunity win base propensities) to establish a base propensity for benchmarking.
Pega Sales Automation uses self-learning adaptive models to generate opportunity predictions. This approach is based on core decision management capabilities and provides the flexibility to add and remove predictors as your needs change.
- Historical data
- The adaptive model provides a set of key predictors that are drawn from an
analysis of data from actual production environments. Production data was
used to create weekly snapshots for each closed opportunity over a two-year
period. Over 2,000 opportunities were used to create the weekly snapshots
and approximately 50,000 records were used to define the key predictors and
train the adaptive models.
The following predictors are provided in the adaptive model:
Pega Sales Automation Pega Sales Automation for Financial Services B2B and B2C opportunities B2B opportunity B2C opportunity .ActiveDays .ActiveDays .ActiveDays .AllTotal30Vs90 .AllTotal30Vs90 .Age (months or years in business) .AllUnique30Vs90 .AllUnique30Vs90 .AllTotal30Vs90 .ContactGrowthPast30Vs90Days .AnnualRevenue .AllUnique30Vs90 .CountOfClsPast30Vs90Days .ContactGrowthPast30Vs90Days .AnnualIncome .OpportunitySource .CountOfClsPast30Vs90Days .ContactGrowthPast30Vs90Days .OrganizationIndustry .CurrentAssets .CountOfClsPast30Vs90Days .OrganizationRevenue .EstimatedCreditScore .CurrentAssets .OrgDownloadActivity30Vs90Days .LoanAmount .EstimatedCreditScore .OrgSubscrbeActivity30Vs90Days .MonthlyDebtToIncomeRatio .LoanAmount .OrgWebsiteActivity30Vs90Days .MonthsInBusiness .MonthlyDebtToIncomeRatio .ReceivedTotal30Vs90 .NumberOfEmployees .NoOfAccounts .ReceivedUnique30Vs90 .OpportunitySource .NoOfHouseholdMembers .SentTotal30Vs90 .OrganizationIndustry .OpportunitySource .SentUnique30Vs90 .OrgDownloadActivity30Vs90Days .pyPostalCode .StageDuration .OrgSubscribeActivity30Vs90Days .ReceivedTotal30Vs90 .StageSequence .OrgWebsiteActivity30Vs90Days .ReceivedUnique30Vs90 .PreviousYearGrowth .SentTotal30Vs90 .pyPostalCode .SentUnique30Vs90 .ReceivedTotal30Vs90 .StageDuration .ReceivedUnique30Vs90 .StageSequence .SentTotal30Vs90 .TotalOutstandingDebt .SentUnique30Vs90 .ValueOfCollateral .StageDuration .StageSequence .TotalOutstandingDebt .ValueOfCollateral - Adaptive learning
- An agent runs daily to execute a data flow that makes a call to a decision strategy. The decision strategy contains all of the adaptive models and runs on all the open opportunities to capture the data that is required by the models. The decision strategy uses the standard Delayed Learning cache. When an opportunity is closed, the application triggers a response strategy from a data flow to fetch the data for relevant decisions and train the applicable models. You can use the same decision strategy at any time to evaluate an opportunity and return propensities.
Review the following adaptive models architecture sections:
- Probability to move to next stage
Adaptive models predict the likelihood that an opportunity will move from the current stage to the next stage. Pega Sales Automation uses the average number of all opportunities that have moved from the current stage to the next stage as the base propensity. The difference between the likelihood that an opportunity will move and the base propensity is an indicator of how you are progressing with the opportunity.
- Win probability
Adaptive models predict the likelihood of winning an opportunity. Pega Sales Automation uses the average number of all won opportunities for a given stage as the base propensity. The difference between the likelihood that you will win an opportunity and the base propensity is an indicator of how you are progressing with the opportunity.
- Close date
Adaptive models predict the quarter when an opportunity is most likely to close. Pega Sales Automation compares the target date range that is set by the sales representative and the predicted closing quarter to indicate whether the opportunity close date is earlier than expected, on time, or delayed.
- Opportunity win model
Prediction for this model is: will this opportunity ever be won? The input predictor range should be as complete as possible. All models share the same predictors, although they might treat them differently.
- Opportunity win base propensity model
This model does not use predictors. Instead, the model uses an opportunity stage as the context to provide the base propensity of winning an opportunity in the current stage.
- Move to next stage model
Prediction for this model is: will this opportunity ever move to a higher stage? When an opportunity moves from the current stage to the next stage, the application sends a positive, one-response to all opportunities in the Adaptive Decision Manager (ADM) data cache. Pega Sales Automation also takes a snapshot of the previous stage. The response is filtered by using an additional Decision Data Store (DDS) dataset. The response strategy for the move to the next stage model filters out the decision results for stages that have already been marked as positive. It then determines whether the current stage is higher than the stage in the snapshot and returns only the decision results for which this is true.
- Move to next stage base propensity model
This model does not use predictors. Instead, the model uses an opportunity stage as the context to provide the base propensity of moving from the current stage to the next stage.
- Win date model
This data model supports separate models for the following outcomes:
- Will this opportunity be won in 0-90 days from now?
- Will this opportunity be won in 90-180 days from now?
- Will this opportunity be won in 180-270 days from now?
- Will this opportunity be won in 270-360 days from now?
Pega Sales Automation uses propositions in a Decision Data shape to model the date ranges. The propositions have both a minimum and maximum days attribute. If you require more granularity, you can edit the propositions to meet your needs and to create a smoother display for the dashboard widget.
- Win date base propensity model
This model does not use predictors. Instead, the model uses an opportunity stage as the context to provide the base propensity of winning an opportunity in a specified time frame.
Opportunity insights use the D_PredictSAOpportunity data page.
- For Pega Sales Automation, review the
D_PredictSAOpportunity data page.
The Analytics widgets in the opportunity run in the context of the D_PredictSAOpportunity data page. This data page has the SAPredictOpportunity activity as a data source, which runs the GetContactGrowthRatio, GetEmailActivityRatio, GetTrendsDataRatio, and GetCIRatio activities before calling the SAPredictOpportunity data flow. The data flow uses the EvaluateOpportunity strategy to predict the propensity to move to the next stage, to win an opportunity, and to predict the close date quarter.
- For Pega Sales Automation for Financial Services, review the
D_PredictSAOpportunity data page.
This data page populates the propensity for an Opportunity case. Analytics widgets of the opportunity insights run in the context of the D_PredictSAOpportunity data page. This data page has the SAPredictOpportunity activity as a data source, which runs the PopulatePredictors activity. The PopulatePredictors activity replaces the following activities: GetContactGrothRatio, GetEmailActivityRatio, GetTrendsDataRatio, and GetCIRatio, which are available in the Pega Sales Automation application. When there are multiple products specified, the PopulatePredictors activity iterates all of the products propensity, but displays the least propensity model. This workflow is applicable only for the credit and debit product types.
- StoreOpportunitySnapshots
The solution uses the StoreOpportunitySnapshots data flow during the initial training of the models by using the data that is fetched from the internal production data. This data flow converts each record from the PegaCRM-Data-SFA-Predictors class into opportunity objects and then routes them to the EvaluateOpportunity strategy. In the data flow, the mode for the EvaluateOpportunity strategy is set to Make decision and store data for later response capture.
- TrainFromHistory
The input for TrainFromHistory comes from the RD OpportunityStages, which fetches one record per opportunity from the predictors’ data table, sorted by maximum stage. This data flow calls the OpportunityClosed and MovedToNextStage data flows.
- OpportunityClosed
The OpportunityClosed data flow calls the CloseOpportunity strategy, which captures responses for decisions in the past period.
- MovedToNextStage
The MoveToNextStage data flow calls the HandleNextStageResponses strategy, which is the core strategy for training the PredictNextStageModels adaptive model. The available responses depend on whether an opportunity moves up or down from the current stage.
- SnapshotOneOpportunity
The SnapshotOneOpportunity data flow reuses the EvaluateOpportunity strategy, which is used to train the model during bulk processing. This data flow runs on a daily basis and captures all predictors for the opportunity each time it runs.
- SAPredictOpportunity
The SAPredictOpportunity data flow reuses the EvaluateOpportunity strategy to get the analytic results for the opportunity.
To view details for each data flow, perform the following steps:
- In the navigation pane of Dev Studio, click .
- To open the data flow record, click a data flow name.
The following are the opportunity insights strategies:
- EvaluateOpportunity
- HandleNextStageResponses
To view details for each strategy, perform the following steps:
- In the navigation pane of Dev Studio, click .
- To open the strategy record, click a strategy name.
Each adaptive model has predictors, context, and outcomes that you must configure before you can train the models to predict outcome propensities based on your use cases. Base propensity models do not have any predictors, but they have the OpportunityStage property in their context so you can train different models for each stage.
Outcome propensities are configured for the following models:
- PredictiveMoveNextStage
- BaseWinModel
- PredictWin
- PredictCloseDate
To view details for each model, perform the following steps:
- In the navigation pane of Dev Studio, click .
- To open the model record, click a model name.
Previous topic Configuring Intelligent Virtual Assistant Next topic Artificial intelligence-based sales coach