
PEGA PLATFORM

Pega Platform 8.1
Upgrade Guide

For Tomcat and Oracle

©2018 Pegasystems Inc., Cambridge, MA. All rights reserved.

Trademarks

For Pegasystems Inc. trademarks and registered trademarks, all rights reserved. All other trademarks or
service marks are property of their respective holders.

For information about the third-party software that is delivered with the product, refer to the third-party
license file on your installation media that is specific to your release.

Notices

This publication describes and/or represents products and services of Pegasystems Inc. It may contain
trade secrets and proprietary information that are protected by various federal, state, and international
laws, and distributed under licenses restricting their use, copying, modification, distribution, or transmittal
in any form without prior written authorization of Pegasystems Inc.

This publication is current as of the date of publication only. Changes to the publication may be
made from time to time at the discretion of Pegasystems Inc. This publication remains the property
of Pegasystems Inc. and must be returned to it upon request. This publication does not imply any
commitment to offer or deliver the products or services described herein.

This publication may include references to Pegasystems Inc. product features that have not been licensed
by you or your company. If you have questions about whether a particular capability is included in your
installation, please consult your Pegasystems Inc. services consultant.

Although Pegasystems Inc. strives for accuracy in its publications, any publication may contain
inaccuracies or typographical errors, as well as technical inaccuracies. Pegasystems Inc. shall not be liable
for technical or editorial errors or omissions contained herein. Pegasystems Inc. may make improvements
and/or changes to the publication at any time without notice.

Any references in this publication to non-Pegasystems websites are provided for convenience only and
do not serve as an endorsement of these websites. The materials at these websites are not part of the
material for Pegasystems products, and use of those websites is at your own risk.

Information concerning non-Pegasystems products was obtained from the suppliers of those products,
their publications, or other publicly available sources. Address questions about non-Pegasystems
products to the suppliers of those products.

This publication may contain examples used in daily business operations that include the names of
people, companies, products, and other third-party publications. Such examples are fictitious and any
similarity to the names or other data used by an actual business enterprise or individual is coincidental.

This document is the property of:

Pegasystems
One Rogers Street
Cambridge, MA 02142-1209, USA
Phone: 617-374-9600 Fax: 617-374-9620

www.pega.com

Document: Pega Platform 8.1 Upgrade Guide

Feedback

If you have comments for how we can improve our materials, send an email to DocRequest@Pega.com.

http://www.pega.com/
mailto:DocRequest@Pega.com?subject=Documentation%20feedback

Contents

Contents

Overview... 6
In-place or out-of-place upgrades and single or double data migration..6

Plan your deployment...8
Environment considerations..8
System requirements... 9

UI-based tool requirements.. 9
Application server requirements.. 9
Database server requirements... 10

Obtain database connection information...10
Node classification in high availability systems... 10

Prepare your application server..12
Commit hotfixes..12
Port configuration...12
Setting the JVM security parameter for LINUX or UNIX..12
Setting Stream nodes for Queue Processor rules in high availability systems..12

Preparing your database.. 14
Backing up your system and database... 14
Verifying that your Oracle database is ready for localization.. 14
Upgrading multitenant systems from Pega 7.1.5 and later... 15
Upgrading from PRPC 6.1 SP2 and earlier: move system settings..15
Database users..16

General user permissions... 16
Oracle user permissions..17

Deployment user privileges and roles...17
Run-time users — privileges and roles... 18
Creating Oracle users from an SQL statement.. 20
Creating Oracle users by using the Enterprise Manager..20

Performing an out-of-place upgrade with a double migration... 21
For high availability systems: Disabling rule creation on the rules schema.. 23
Create two new physical schemas on two databases...24
Migrating the existing rules schema..24

Migrating the rules schema when you have access to both databases... 24
Migrating the rules schema when you have access to one database.. 25

Upgrade methods for the migrated rules schema..27
Upgrading the rules schema by using the Installation and Upgrade Assistant... 27
Upgrading the rules schema from the command line..29

Migrating to the new rules schema...29
Migrating to the new rules schema when the system has access to both databases.. 30
Migrating to the new rules schema when the system has access to one database at a time (firewall).......................... 31

Optional: importing applications and other rule changes for highly available systems...32
Upgrading the data schema..32

Pega Platform Upgrade Guide | September 27, 2018 | iii

Contents

Performing an out-of-place upgrade with a single migration...34
For high availability systems: Disabling rule creation on the rules schema.. 36
Create a new rules schema...36
Migrating the rules schema with one database.. 36
Upgrade methods for the migrated rules schema..37

Upgrading the rules schema by using the Installation and Upgrade Assistant... 37
Upgrading the rules schema from the command line..39

Optional: importing applications and other rule changes for highly available systems...40
Upgrading the data schema..40

Performing an in-place upgrade..41
Upgrade methods for the rules schema...41

Upgrading the rules schema by using the Installation and Upgrade Assistant... 41
Upgrading the rules schema in place from the command line... 43

Post-upgrade configuration..44
Upgrading from PRPC 6.1 SP2 and earlier: updating ruleset columns... 44
For Docker, multiple VMs, or multiple NICs: Setting the public address..44
Reconfiguring the application server...45

Apache Tomcat: Defining default schemas...45
Redeploying the Pega Platform WAR or EAR file... 45

Apache Tomcat: Redeploying Pega Platform..45
For upgrades from Pega 7.x: Enabling rule creation on the production system...46
Upgrades from 7.2.2 and earlier: Port Apache logging file customizations to the new logging file.. 46
Restarting Pega Platform...46
Locking and rolling ruleset versions.. 47
Upgrading from Pega 7.1.7 through 7.2.1: Rebuilding search indexes...47
Optional: Upgrading from Pega 7.1.6 and earlier: Configuring the default search nodes and storage directory........................48
Final Rules Conflict Report.. 50
For upgrades from Pega 7.2.2 and earlier: Adopting APIs and rules for Pega Survey..50
Scheduling column population jobs.. 52
Upgrading from Pega 7.2.2 or earlier: Upgrading access role names to enable notifications...52
Upgrades from 7.2.2 and earlier: Enabling access to environmental information..53
Optional: Leveraging the current UI Kit rules...53
Enabling operators... 54
Running upgrade utilities.. 55
Cleaning up unused tables..55
Upgrading your custom applications...55
Upgrading your application schema..55
Review log files..56
Test your applications.. 56
Enabling server-side screen captures for application documents...56

Configuring PhantomJS REST server security for including screen captures in an application document..................... 57
Adding special privileges to access the Requester Management landing page.. 58
Upgrading from Pega 7.2.2: customizing the agent schedules for the standard Pega Platform agents.......................................58
Updating the service email for Pulse email replies...59

Appendices..60
Migrate script properties... 60
Editing the setupDatabase.properties file...62

Database connection properties and script arguments... 62

Pega Platform Upgrade Guide | September 27, 2018 | iv

Contents

Additional upgrade properties..63
Optional: Generating and applying DDL... 64

Generating and applying DDL in an out-of-place upgrade...64
Generating and applying DDL in an in-place upgrade..67

Generating the DDL file...67
Applying the DDL file... 68

Editing the setupDatabase.properties file to bypass DDL generation.. 68
Installing user-defined functions.. 68
Switching to Hazelcast embedded mode from Apache Ignite client-server mode..69
Reverse an out-of-place upgrade... 70

Limitations..70
Upgrade reversal details..71
Reversing an upgrade.. 71

Troubleshoot upgrade errors..72
Upgrades from PRPC 5.4 and earlier: System-Work-Indexer not found in dictionary...72
Resuming or restarting after a failed deployment.. 73
Recovering from a faulty split-schema migration.. 73
PEGA0055 alert — clocks not synchronized between nodes... 73

Pega Platform Upgrade Guide | September 27, 2018 | v

Overview

Overview
Use the Pega documentation to install or upgrade your system.

This guide describes how to upgrade an existing instance of PRPC or Pega Platform to 8.1.

To install a new version of Pega Platform, see the Pega 8.1 Installation Guide for your database and
application server platform.

Caution: This release introduces new features and functionality that might cause compatibility
issues with your existing application. You might need to take additional actions before deploying.
For information about new features, see the Pega Community. For information about post-upgrade
actions, see Post-upgrade configuration.

In-place or out-of-place upgrades and single or double
data migration
Your system requirements determine whether you use the in-place or out-of-place upgrade method, and
whether you need to perform a single or double data migration.

In-place and out-of-place upgrades

Depending on the amount of downtime your system can tolerate, you can either perform an in-place or
out-of-place upgrade:

• In an in-place upgrade, the existing schemas are upgraded, and no new schemas are created. These
upgrades require significant downtime because they directly modify the active schemas. You cannot
use Pega Platform during an in-place upgrade. Use in-place upgrades for experimental, development,
and most test systems. For more information, see Performing an in-place upgrade.

• To minimize downtime, perform an out-of-place upgrade. Out-of-place upgrades require a temporary
upgrade schema that can reside either on the production database or on a second temporary
database. The upgrade scripts run on the temporary schema. The migration script moves the rules
between the schemas. This minimizes the length of time during which the production system is
unavailable. As a best practice, use out-of-place upgrades for split-schema configurations. Out-of-place
upgrades can also be reversed.

Double and single migration for out-of-place upgrades

For out-of-place upgrades, the availability of server resources and security features determine whether
you perform a single or double migration.

• To minimize consumption of server hardware resources to avoid performance drain on existing
systems or when network I/O latency is significant, perform a double migration.

1. Migrate the contents of the original schemas to a temporary schema on a separate database.

2. Upgrade the temporary schemas.

3. Migrate the upgraded schemas back to the original database.

This is the best practice for database servers that host multiple high-use applications in addition to
Pega Platform, for database servers that have restrictive CPU or I/O limitations, or if the upgrade
process cannot be executed on the database server or within the same data center.

For detailed instructions, see Performing an out-of-place upgrade with a double migration.

• If your system includes a firewall or other security measures and the upgrade process does not
have database access to both the source system and the target system, perform a double-migration

Pega Platform Upgrade Guide | September 27, 2018 | 6

Overview

upgrade with firewall. For detailed instructions, see Performing an out-of-place upgrade with a double
migration.

• If your system does not have any of these restrictions but still requires minimal downtime, perform a
single-migration upgrade:

1. Migrate the contents of the original schemas to a temporary schema on the original database.

2. Upgrade the temporary schema. The temporary schema becomes the new rules schema.

For more information, see Performing an out-of-place upgrade with a single migration.

Pega Platform Upgrade Guide | September 27, 2018 | 7

Plan your deployment

Plan your deployment
Pega Platform supports several configuration options that can affect the choices that you make during the
deployment. Before beginning, read this section thoroughly.

Plan your architecture and configuration.

• Decide whether to perform an in-place or out-of-place deployment. To minimize downtime, use the
out-of-place method. Perform in-place deployments if lengthy downtime is not a concern, for example,
for developmental systems. For more information, see In-place or out-of-place upgrades and single or
double data migration.

• Choose a configuration type: single-schema or split-schema configuration. Pega recommends a
split-schema configuration. See Split-schema and single-schema configurations. For split-schema
configurations, choose whether you will maintain separate tablespaces for the data schema and rules
schema. This decision depends on your database configuration.

• Choose whether to use the standard product edition or the multitenancy edition. The multitenancy
edition has different requirements, different run-time behaviors, and different administrative
procedures from the standard edition. Before you select the multitenancy edition, review the
Multitenancy Administration Guide on the Pega Community.

Upgrading from one edition to another is not supported. The schema DDLs for the two editions are
not compatible. For example, if you install the standard edition and later decide to use the multitenant
edition, you must either drop and re-create the database or create a new database.

• Choose whether to use Kerberos functionality. Kerberos is a computer network authentication protocol
that allows nodes communicating over a non-secure network to prove their identity to one another in
a secure manner. If you enable Kerberos authentication, you must use the command line method to
deploy Pega Platform. For more information, see your installation guide.

Consider the following precautions before you continue:

• Always maintain a backup of your system, especially before performing an upgrade.

• Do not change your environment while you are deploying Pega Platform. For example, if you are
making changes to your application server or database server, do so before you deploy Pega Platform.

• Conduct a site-specific analysis of Pega Platform and any custom applications to determine the size of
your database tablespace.

• The upgrade process requires additional space approximately equal to twice the size of your rules
schema. Ensure that your database can allocate enough space to perform this upgrade.

Environment considerations
Consider your application customization, libraries, database, and special site requirements before
continuing.

• Custom applications — If you are using any custom applications, confirm whether your custom
applications are supported for this version of the Pega Platform. It might be necessary to upgrade your
versions of the custom applications to work with the new version of the Pega Platform.

• Customized Pega Platform database — If you made changes to the Pega Platform database schema,
incorporate those changes into the database after you upgrade the database schema. In particular,
you should merge any changes to triggers, views, or stored procedures that you made in the previous
version, and review any custom rules or work tables that you created. The upgrade procedure leaves
tables you have added to the schema in place, but you might need to modify the tables to match
changes in the Pega schema.

Pega Platform Upgrade Guide | September 27, 2018 | 8

Plan your deployment

Also verify that schema references in triggers, stored procedures, and views correctly reflect the new
schema names.

• Third-party or custom libraries — If you have integrated third-party or custom libraries into your
system, make sure you have a copy of them before upgrading. The upgrade might overwrite your
deployed libraries.

• Special site requirements — Your site might have special deployment, integration, or security
requirements. Schedule an early review of the upgrade procedure with the appropriate system and
database administrators.

System requirements
Before you deploy, ensure that your system meets the following minimum requirements.

UI-based tool requirements
If you plan to use the UI-based Installation and Upgrade Assistant, ensure that the system meets these
minimum system requirements in addition to all other requirements.

• 1.25 GB minimum available memory

• 10 GB minimum disk space plus at least 8 GB available space in the temporary directory of the root file
system. The default temporary directory for the deployment is java.io.tmpdir.

• Java Platform, Standard Edition Development Kit (JDK)

Application server requirements
Install only Pega Platform on the application server. The application server must meet the minimum
requirements listed in the Platform Support Guide on the Pega Community and in this section.

• Oracle JDBC type 4 driver, such as ojdbc7.jar. For more information about supported drivers, see
the Platform Support Guide.

• Supported 64-bit JDK. See the Platform Support Guide on the Pega Community for a list of supported
versions.

• 1 GB minimum free disk space. You might need additional storage space for debugging and logging.

• Memory requirements: Pega Platform runs in memory (heap) on Java Virtual Machines (JVMs). In
general, all activity is distributed over multiple JVMs (nodes) on the application server.

• Standard suggested system heap size is 4 - 8 GB based on monitoring of memory usage and
garbage collection frequency.

• Larger heaps are advisable if your applications allow a high number of concurrent open tasks per
session or cache a large collection of transaction or reference data.

• Do not deploy Pega Platform in an environment where the heap size exceeds the vendor-specific
effectiveness limit.

• Oracle JDKs use compression to minimize the cost of large heaps. The compression option is labeled
CompressedOOPS and is effective up to 32 GB. In current 64-bit JVMs, compression is enabled by
default.

• The host application server memory size must be at least 4 GB larger than the Pega Platform
heap size to allow space for the operating system, monitoring tools, operating system network file
buffering, and JVM memory size (-XMX option). The minimum host application server memory size is
8 GB:

4 GB heap + 4 GB for native memory, operating system, and buffering

Pega Platform Upgrade Guide | September 27, 2018 | 9

Plan your deployment

If the server does not have enough memory allocated to run Pega Platform, the system can hang
without an error message. The correct memory settings depend on your server hardware, the
number of other applications, and the number of users on the server, and might be larger than
these recommendations.

Database server requirements
Your database server must meet the minimum requirements listed in the Platform Support Guide on the
Pega Community.

Verify that the system also includes:

• Support for Java.

• Support for User-defined functions (UDFs) if you plan to use them.

• A supported version of the JDBC4 driver for your version of the database

• 8 GB minimum RAM

• 10 GB minimum initial tablespace set to auto-extend

• 50 MB logfile size — This default size is sufficient for the initial installation, but will need to be resized
to run the application server workload.

Obtain database connection information
Before you configure the data source resources, obtain the correct database connection information from
your database administrator.

To determine the database connection URL, obtain the following information from your database
administrator:

• Connection method — Service or SID

• Service or SID name

• Host name

• Port number

When you configure the application server, you will enter the connection string, pega.jdbc.url as follows.
Replace items in italics with the values for your system:

Use one of the following formats:

• jdbc:oracle:thin:@localhost: port/service-name

• jdbc:oracle:thin:@localhost: port:SID

Node classification in high availability systems
Optimize performance and provide higher scalability and stability in a cluster by using node classification,
which is the process of separating nodes, segregating them by purpose, and predefining their behavior.

Note: Node classification applies to high availability cluster environments only.

By configuring a node with a node type, you dedicate the node to perform particular actions and run
only those agents, listeners, job schedulers, and queue processors that are mapped to the node type. For
example, if a set of nodes is dedicated to user requests, background processes can be disabled to improve
performance.

Pega Platform Upgrade Guide | September 27, 2018 | 10

Plan your deployment

Every node that is started with the same node type uses the same template and follows the same
behavior.

For more information, see Node classification on the Pega Community.

Pega Platform Upgrade Guide | September 27, 2018 | 11

Prepare your application server

Prepare your application server
This section describes how to prepare your application server for the upgrade.

Commit hotfixes
Before you deploy, commit any uncommitted hotfixes on your system. If there are uncommitted hotfixes
when you deploy, the hotfixes are automatically committed. For information about committing hotfixes,
see the help.

Port configuration
Before you configure your application server, ensure that the following ports are open and available:

• Search (Elasticsearch) — one TCP port in the range 9300-9399 (default 9300). This port is used for
internal node-to-node communication only, and should not be externally accessible.

• Cluster communication — leave open the port range 5701-5800. By default, the system begins with
port 5701, and then looks for the next port in the sequence (5702, followed by 5703 and so on). To
override the default port range, set a different value for the initialization/cluster/ports setting in the
prconfig.xml file.

• Pega Platform can include multiple servers, or nodes, and each node can contain multiple Java Virtual
Machines (JVMs). The number of available ports in this range needs to be greater than or equal to the
greatest number of JVMs on any one node in the cluster. For example, if there are three JVMs on one
node, and seven JVMs on another node, there must be at least seven ports available.

Setting the JVM security parameter for LINUX or UNIX
If you use UNIX or LINUX, set security to urandom.

1. Open the configuration file for your application server:

setenv.sh

2. Enter the following argument to set security to urandom:
-Djava.security.egd=file:///dev/urandom

3. Save the changes.

Setting Stream nodes for Queue Processor rules in high
availability systems
Queue Processor rules require at least one stream node. Without a stream node, messages cannot be
queued to or retrieved from Kafka. Configure two stream nodes by using node classification to provide a
backup in case one stream node fails.

Note: Node classification applies to high availability cluster environments only.

1. Open the configuration file for your application server:

Pega Platform Upgrade Guide | September 27, 2018 | 12

Prepare your application server

setenv.sh

2. Configure at least two nodes as stream nodes by entering the following JVM argument:

-DNodeType=Stream

3. Save the configuration file.

Pega Platform Upgrade Guide | September 27, 2018 | 13

Preparing your database

Preparing your database
Before you begin preparing your database, see the Platform Support Guide on the Pega Community to
verify that your database is supported. Then have your database administrator make the modifications
described in this section.

• If your system includes synonyms to Pega-supplied tables, drop the synonyms before you upgrade. If
necessary, reapply the synonyms after the deployment is complete.

• If you are using Oracle 11g, do not use the UCP (Universal Connection Pool) feature in your database.
Oracle BUG 8462305 causes a failure when an application tries to call a stored procedure. This error
causes Pega Platform to work incorrectly with a database that uses UCP. To determine if UCP is in use,
check for the ucp.jar file in the classpath of the application server.

Backing up your system and database
Upgrading modifies both the data schema and the rules data; use a backup procedure that preserves
both schemas. Back up the existing database, your applications, and the system.

1. Verify that all rules are checked in.

2. Use your database utilities to back up the Pega Platform database.

3. If you edited any of the following Pega Platform configuration files in the APP- INF\classes directory
of an EAR deployment or the WEB-INF\classes directory of a WAR deployment, include these in the
backup:

• prbootstrap.properties

• prconfig.xml

• logging file: prlogging.xml or prlog4j2.xml

• web.xml

• pegarules.keyring or any other .keyring files

Note: For upgrades from PRPC 6.1 SP2 or earlier if you added System Settings to your
prbootstrap.properties or prconfig.xml files, convert them to Dynamic-System-Settings
Data- instances. See Upgrading from PRPC 6.1 SP2 and earlier: moving system settings.

4. Back up any third-party or custom JAR files on your system. Redeploying the Pega Platform applications
might delete these from your application server.

Verifying that your Oracle database is ready for
localization
Oracle supports two types of character semantics, BYTE and CHAR. CHAR supports international character
sets.

Before you upgrade, verify that Oracle semantics is set to CHAR to support localization:

1. On the database server, open the file SPFILE BNAME.ora in the database directory.

2. Verify that the settings are as follows:

NLS_LENGTH_SEMANTICS=CHAR scope=both;

Pega Platform Upgrade Guide | September 27, 2018 | 14

Preparing your database

NLS_CHARACTERSET=AL32UTF8;
NLS_NCHAR_CHARACTERSET=AL16UTF16;

3. If the semantics settings differ, migrate the database character set. For more information, see your
Oracle documentation and the Pega Community article Migrating Database Character Sets for Oracle.

Upgrading multitenant systems from Pega 7.1.5 and
later
Follow the steps in this section to upgrade a multitenant system from Pega 7.1.5 or later. If you are
upgrading from a version prior to Pega 7.1.5, skip this section. If you do not have a multitenant system,
skip this section.

The multitenant table architecture requires an additional column, pzTenantID. Several tables are now
tenant-qualified; deploying the new version of Pega Platform automatically adds the multitenant column
to these tables.

SQL databases do not allow the addition of a non-null column to an existing table unless the table is
empty. Therefore, if the tables contain data, upgrading systems on those databases displays an error
"Table must be empty to add column" and the deployment fails. For most tables, truncating the data is
acceptable; however, the pr_data_admin_product table and the pr_data_tag_relevantrecord table includes
important data. Pega provides a script to add the pzTenantID column to the pr_data_admin_product table
and the pr_data_tag_relevantrecord table without losing data.

To prepare the tables, follow these steps before you upgrade. The specific steps depend on your starting
version of the Pega Platform.

1. Log in to the data schema.

2. For upgrades from Pega 7.1.9 and earlier, add the column to the pr_data_admin_product table without
truncating the data:

a) Navigate to the AdditionalUpgradeScripts directory:
Pega-image/ResourceKit/AdditionalUpgradeScripts/MT/719AndEarlier/

b) Run the script for your database:
database_mt_upgrade_tables.sql

3. For upgrades from Pega 7.2 and Pega 7.2.1, add the column to the pr_data_tag_relevantrecord table
without truncating the data::

a) Navigate to the AdditionalUpgradeScripts directory:
Pega-image/ResourceKit/AdditionalUpgradeScripts/MT/72And721/

b) Run the script for your database:
database_mt_upgrade_tables_d_a_tag_relevantrecord.sql

Upgrading from PRPC 6.1 SP2 and earlier: move system
settings
If you are upgrading from 6.1 SP2 or earlier, move any custom System Settings from the prconfig.xml
or prbootstrap.properties configuration files to the Dynamic System Settings (Data-Admin-System-

Pega Platform Upgrade Guide | September 27, 2018 | 15

Preparing your database

Settings). Settings in env elements in your current prconfig.xml or prbootstrap.properties files
continue to work, and this task can be done at any time.

Pega provides a utility to move the settings from the configuration files to Data-Admin-System-Settings
instances. See "Upgrading Configuration Settings from Prior Versions to Version 6.2" in the Configuration
Settings Reference Guide on the Pega Community for details. Note that the instructions on how to run this
utility are the same for Pega 8.1 as they are for version 6.2.

Moving these settings to the database has several advantages.

• Since the settings are stored as Data- instances, they can be read from the database by all nodes
running your installation. All nodes will have the same setting values, unlike the values in the
prconfig.xml file, which apply only to the node where that file is located.

• The values of the dynamic system settings can be viewed and modified from Dev Studio. Alternately,
values stored in the configuration files must be changed by editing the file, which can require restarting
the application nodes.

Database users
This section describes deployment and runtime users and lists all required permissions.

• Deployment user — This user performs actions only during the deployment.

• Oracle users — Because Oracle has a one-to-one relationship between users and schemas, if you have
a split-schema configuration, you must have separate users for the rules schema and the data schema.

• Oracle rules schema owner — Only used to create the schema. The Oracle rules schema owner
can be associated with either individual tablespaces or a common tablespace. Pegasystems
recommends separate tablespaces for each user in critical SDLC environments.

• The Oracle data schema owner is the Base runtime user.

• Run-time users — These users perform actions on the Pega Platform after the deployment. In a dual-
user configuration, an Admin user is granted full privileges, and a Base user is granted a smaller
subset. Pega recommends the dual-user configuration:

• Base user — The user who runs the Pega Platform. Most run-time operations use the Base user and
associated data source.

The Base user is the Oracle data schema user.

Pega recommends that you use the dual-user configuration with separate Admin and Base users;
however, you can create a single Base user with both sets of privileges. If there is no separate Admin
user, the Pega Platform uses the Base user for all run-time operations.

Note: If you have only a Base user, the system cannot perform automatic schema-change
operations.

General user permissions
The following table describes the general permissions for each user and the purpose of each permission.

Pega recommends the dual-user configuration. For a single-user configuration, the Base user also
requires the permissions listed for the Admin user.

Permission Deployment User Base User Admin User

Insert/select/update/delete on
data and rules tables

The deployment process saves
instances to data and rules
tables.

User has basic read and write
access to data and rules tables.

Pega Platform Upgrade Guide | September 27, 2018 | 16

Preparing your database

Permission Deployment User Base User Admin User

Select data and rule schema
metadata

The deployment process reads
metadata about tables and
other objects to determine the
most efficient way to access
and store data.

PegaRULES reads metadata
about tables and other objects
to determine the most efficient
way to access and store data.

Execute stored procedures in
data and rules schemas

The deployment process uses
stored procedures for system
operations.

PegaRULES uses stored
procedures for system
operations.

Create/update/drop tables,
indexes, and constraints in data
and rules schema

The deployment process
installs the tables, indexes, and
constraints used by PegaRULES.

Various system management
tools allow you to create and
modify tables and indexes. For
data schemas, various facilities
in decisioning create short-lived
tables to assist with strategy
analysis.

Create/update/drop views in
data and rules schemas

The deployment process
installs the views used by
PegaRULES.

Various facilities in decisioning
create short-lived views to
assist with strategy analysis.
Import also requires this when
importing views.

Create/update/drop stored
procedures, triggers, and
functions

The deployment process
installs stored procedures,
triggers, and functions used by
PegaRULES.

Enable and disable triggers on
rule tables

The installation and upgrade
processes disable triggers in
order to save large amounts of
records more quickly.

Truncate rule and data tables Various tables must be
truncated during a PegaRULES
upgrade.

Grant object-level privileges on
rules schema to data user

When the install and upgrade
processes create tables and
other objects in the rules
schema, they must grant the
Base user access to these
objects.

When system management
utilities create tables and other
objects in the rules schema,
they must grant the Base user
access to these objects.

Note: If you plan to manually install the user-defined functions (UDFs) from Pega, the database
user who will install the UDFs cannot have the sysadmin role. Having the sysadmin role changes
the default schema name and causes installation problems. For more information about UDFs, see
Installing user-defined functions.

Oracle user permissions
Use either an SQL command or the Oracle Enterprise Manager to create users with the privileges and
roles listed in this section. Because Oracle maintains a one-to-one relationship between schemas and
database users, creating users also creates the schemas.

All Oracle database users require unlimited tablespace. For information about creating the users with
unlimited tablespace privileges, see Creating Oracle users from an SQL statement. For information about
using the Oracle Enterprise Manager to create users and assign privileges and roles, see Creating Oracle
users by using the Enterprise Manager.

Deployment user privileges and roles
The Oracle rules schema owner requires only unlimited tablespace and is only used for deployment.

Pega Platform Upgrade Guide | September 27, 2018 | 17

Preparing your database

The Deployment user requires the following privileges and roles for all configurations:

• UNLIMITED TABLESPACE

• CREATE SESSION

• CREATE ANY TABLE

• ALTER ANY TABLE

• INSERT ANY TABLE WITH ADMIN OPTION

• SELECT ANY TABLE

• UPDATE ANY TABLE

• DELETE ANY TABLE

• CREATE ANY INDEX

• CREATE ANY PROCEDURE

• EXECUTE ANY PROCEDURE

• CREATE ANY VIEW

• CREATE ANY TYPE

• CREATE ANY TRIGGER

• ALTER ANY TRIGGER

• GRANT ANY OBJECT PRIVILEGE

• DROP ANY PROCEDURE

• DROP ANY TRIGGER

• DROP ANY TABLE

• DROP ANY VIEW

• DROP ANY INDEX

• ANALYZE ANY

• ANALYZE ANY DICTIONARY

• SELECT_CATALOG_ROLE (This is a role, not a privilege.)

Note: For custom applications, you must grant the SELECT_CATALOG_ROLE to the
Deployment or Admin user. Some custom applications use triggers, so the user will need the
SELECT_CATALOG_ROLE to drop triggers that read from the update cache and rule view tables.
The deployment automatically drops custom triggers. Manually re-create custom triggers after
you deploy Pega Platform.

• SESSIONS_PER_USER: When the upgrade begins to import rules, it opens multiple parallel connections.
Consider setting SESSIONS_PER_USER to UNLIMITED to avoid an error similar to the following:

Exceeded simultaneous SESSIONS_PER_USER limit

Run-time users — privileges and roles
The run-time users require different permissions depending on whether you have a dual-user
configuration.

Note: The run-time users of the rules and data schemas can share the same tablespace. If you
create separate tablespaces for the rules schema and the data schema users, base the size of the
tablespace on the estimated number of work objects in the application.

Pega Platform Upgrade Guide | September 27, 2018 | 18

Preparing your database

Dual-user configuration — Admin and Base users

In a dual-user configuration, grant these privileges and roles:

• Admin user

• UNLIMITED TABLESPACE

• CREATE SESSION

• CREATE ANY TABLE

• ALTER ANY TABLE

• INSERT ANY TABLE WITH ADMIN OPTION

• SELECT ANY TABLE

• UPDATE ANY TABLE

• DELETE ANY TABLE

• CREATE ANY INDEX

• CREATE ANY PROCEDURE

• EXECUTE ANY PROCEDURE

• CREATE ANY VIEW

• CREATE ANY TYPE

• CREATE ANY TRIGGER

• ALTER ANY TRIGGER

• GRANT ANY OBJECT PRIVILEGE

• DROP ANY PROCEDURE

• DROP ANY TRIGGER

• DROP ANY TABLE

• DROP ANY VIEW

• DROP ANY INDEX

• ANALYZE ANY

• ANALYZE ANY DICTIONARY

• SELECT_CATALOG_ROLE (This is a role, not a privilege.)

• Base user—The Base user is the Oracle data schema owner.

• Basic read and write access to data and rules tables including rules resolution.

• UNLIMITED TABLESPACE

• CREATE SESSION

Single-user configuration— Base user only

The Base user is the Oracle data schema owner.

Note: Pega recommends that you create an Admin user separate from the Base user; if you opt
for a single Base user, the system cannot perform automatic schema-change operations.

• Basic read and write access to data and rules tables including rules resolution.

• UNLIMITED TABLESPACE

• CREATE SESSION

Pega Platform Upgrade Guide | September 27, 2018 | 19

Creating Oracle users from an SQL statement
Use SQL statements to create users. For information about using the Oracle Enterprise Manager to create
users and assign privileges and roles, see your Oracle documentation.

1. On the database server, run the following SQL statement to create users and grant the users unlimited
access to the default USERS tablespace.
ALTER USER <user> DEFAULT TABLESPACE USERS QUOTA UNLIMITED ON USERS;

2. Use the Oracle tools to assign the appropriate roles and privileges to this user.

3. Repeat steps 1 and 2 for the remaining users:

• Oracle schema users:

• For single schemas, create one Oracle schema user

• For split-schemas, create separate Oracle rules and data schema users.

• Deployment user

• Base user

• Admin user (for dual-user configurations)

Creating Oracle users by using the Enterprise Manager
Follow these steps to create a user:

1. Log in to the Enterprise Manager using the URL provided by the Database Configuration Assistant.
The URL is usually in the form: https://host:5501/em

2. Enter the user name and password and click Login.

• User name = sys

• Password = password

3. Select Security > Users.

4. Select Actions > Create User. Accept the other defaults.

5. On the User Account step, enter the name and password for the user you are creating.

6. Click the right arrow.

a) If you created a dedicated tablespace, choose that tablespace from the menu.

b) Accept the other defaults.

7. Click the right arrow.

8. Select the privileges for this user and click OK.

9. Repeat these steps to configure the remaining users.

Performing an out-of-place upgrade with a double migration

Performing an out-of-place upgrade with a
double migration
Perform an out-of-place upgrade to minimize downtime. Use a double migration to avoid performance
drain on existing database servers. The rules schema upgrade occurs out-of-place, and the data schema
upgrade occurs in place.

Note: To further minimize downtime, use the High Availability features. For more information
about High Availability, see the Pega Platform High Availability Administration Guide.

This upgrade involves four schemas:

• Data schema - your current data schema. This will be your data schema after the upgrade as well.

• Rules schema - your current rules schema. This schema will be replaced after the upgrade.

• Temporary upgrade schema - a temporary schema on a separate database used for staging the
upgrade. This will include the rules and data tables during the upgrade.

• New rules schema- the new rules schema. This will become the rules schema after the upgrade.

The generic process for upgrading a split-schema configuration can be summarized in the following steps:

1. For upgrades to high-availability systems on Pega 7.x, disable rule creation on the rules schema. See
For high availability systems: Disabling rule creation on the rules schema.

Note: During the upgrade, you can still use the original system, but any rules created after the
migration will be lost when you switch to the upgraded rules schema. The data schema retains
all new data and work.

2. Create two blank schemas and a temporary database. See Create two new physical schemas on two
databases.

3. Migrate the current rules schema to the temporary upgrade schema. See Migrating the existing rules
schema.

Pega Platform Upgrade Guide | September 27, 2018 | 21

Performing an out-of-place upgrade with a double migration

4. Upgrade the temporary upgrade schema. See Upgrade methods for the migrated rules schema.

5. Migrate the upgraded temporary upgrade schema to the new rules schema. See Migrating to the new
rules schema.

Pega Platform Upgrade Guide | September 27, 2018 | 22

Performing an out-of-place upgrade with a double migration

6. Shut down the existing system.

7. Use the upgrade script to upgrade the data schema and reference the new rules schema. See
Upgrading the data schema.

For high availability systems: Disabling rule creation on
the rules schema
If you are using the recommended High Availability option, you can disable rule creation on the rules
schema to speed the deployment. If you are not using the High Availability option, skip this section.

Before you deploy, commit all uncommitted hotfixes. After you begin the deployment, ensure that no
changes to the rules, including hotfixes, are applied until after the deployment is complete.

1. Log in as a user with the PegaRULES:HighAvailabilityAdministrator role.

Pega Platform Upgrade Guide | September 27, 2018 | 23

Performing an out-of-place upgrade with a double migration

2. Navigate to System > High Availability > HA Cluster Settings.

3. Under Cluster Upgrade, select Cluster Upgrading - Disable saving of rules.

4. Click Submit.

5. Log out.

Create two new physical schemas on two databases
To use two databases for an out-of-place upgrade, create a new database and two new schemas:

• Create the temporary database of the same type and version as your current database.

• Create the temporary upgrade schema in the temporary database.

• Create the new rules schema in your original database.

Migrating the existing rules schema
Use the migrate script to migrate the rules tables and other required database objects from the existing
schema to the new rules schema.

You will also use the migrate script later to generate and apply rules objects, such as functions and stored
procedures, after the upgrade, but the property settings will be different. The Deployment user performs
the migrations.

Note: Pega strongly recommends that you use the migration script. The use of vendor tools to
manage this step is not recommended. If you do not use the migrate script to migrate the schema,
there are additional manual steps required that are not documented here.

This process depends on whether the system has access to both the original and temporary databases.
For more information, see:

• Migrating the rules schema when you have access to both databases

• Migrating the rules schema when you have access to one database

Note: To minimize the time required, run the migration scripts from the same data center as the
database server.

Migrating the rules schema when you have access to both databases
If you have access to both the temporary and original databases, run the migrate script once to migrate
the rules schema.

1. Use a text editor to edit the migrateSystem.properties file in the scripts directory:
Pega-image\scripts\migrateSystem.properties

2. Configure the source properties. For more information, see Migrate script properties.

Note: If you are starting with a single-schema system, the pega.source.rules.schema and
pega.source.data.schema names are the same.

Connection Information
pega.source.jdbc.driver.jar=full path/DRIVER.jar
pega.source.jdbc.driver.class=database driver class
pega.source.database.type=database vendor type
pega.source.jdbc.url=URL of database
pega.source.jdbc.username=Deployment user name

Pega Platform Upgrade Guide | September 27, 2018 | 24

Performing an out-of-place upgrade with a double migration

pega.source.jdbc.password=password
pega.source.rules.schema=original rules schema name
pega.source.data.schema=original data schema name

3. Configure the target properties. See Properties file parameters for more information. Leave the target
data schema name blank:

pega.target.jdbc.driver.jar=full path/DRIVER.JAR
pega.target.jdbc.driver.class=database driver class
pega.target.database.type=database vendor type
pega.target.jdbc.url=database URL
pega.target.jdbc.username=Deployment user name
pega.target.jdbc.password=password
pega.target.rules.schema=temporary upgrade schema
pega.target.data.schema=

Note: If pega.target.data.schema is blank, the rules schema is used by default.

4. Configure the bulkmover directory:
pega.bulkmover.directory=full path to output directory

5. Configure a temporary directory:
pega.migrate.temp.directory=full path to temporary directory

6. Configure the operations to be performed by the utility as shown below:

pega.move.admin.table=true
pega.clone.generate.xml=true
pega.clone.create.ddl=true
pega.clone.apply.ddl=true
pega.bulkmover.unload.db=true
pega.bulkmover.load.db=true

7. Disable the operations as shown below:

pega.rules.objects.generate=false
 pega.rule.objects.apply=false

8. Save the properties file.

9. Open a command prompt, and navigate to the scripts directory.

10. Type migrate.bat or ./migrate.sh to run the script.

Pega Platform writes command-line output to a file in the Pega-image\scripts\logs directory.

Migrating the rules schema when you have access to one database
If you can only access one database at a time (for example, if there is a firewall between the two servers),
run the migration script twice: first on a system that can access the original source database, and then
where it can access the temporary target database.

Make sure that the system that accesses the temporary database has access to the bulkmover directory
and the DDL generated from the source database.

1. On a system that can access the original database, export rules from the original database.

a) Use a text editor to edit the migrateSystem.properties file in the scripts directory:
Pega-image\scripts\migrateSystem.properties

Pega Platform Upgrade Guide | September 27, 2018 | 25

Performing an out-of-place upgrade with a double migration

b) Configure the source properties. For more information, see Migrate script properties.

Note: If you are starting with a single-schema system, the pega.source.rules.schema and
pega.source.data.schema names are the same.

Connection Information
 pega.source.jdbc.driver.jar=full path/DRIVER.jar
 pega.source.jdbc.driver.class=database driver class
 pega.source.database.type=database vendor type
 pega.source.jdbc.url=URL of database
 pega.source.jdbc.username=Deployment user name
 pega.source.jdbc.password=password
 pega.source.rules.schema=original rules schema name
 pega.source.data.schema=original data schema name

c) Configure the target properties. See Properties file parameters for more information. Leave the
target data schema name blank:

 pega.target.jdbc.driver.jar=full path/DRIVER.JAR
 pega.target.jdbc.driver.class=database driver class
 pega.target.database.type=database vendor type
 pega.target.jdbc.url=database URL
 pega.target.jdbc.username=Deployment user name
 pega.target.jdbc.password=password
 pega.target.rules.schema=temporary upgrade schema
 pega.target.data.schema=

Note: If pega.target.data.schema is blank, the rules schema is used by default.

d) Configure the bulkmover directory:

pega.bulkmover.directory=full path to output directory

e) Configure a temporary directory:

pega.migrate.temp.directory=full path to temporary directory

f) Configure the operations to be performed by the utility as shown below:

 pega.move.admin.table=true
 pega.clone.generate.xml=true
 pega.clone.create.ddl=true
 pega.clone.apply.ddl=false
 pega.bulkmover.unload.db=true
 pega.bulkmover.load.db=false
 pega.rules.objects.generate=false
 pega.rule.objects.apply=false

g) Save the properties file.

h) Open a command prompt, and navigate to the scripts directory.

i) Type migrate.bat or ./migrate.sh to export the rules.

2. On a system that can access the temporary database, import the rules to the temporary database.

Pega Platform Upgrade Guide | September 27, 2018 | 26

Performing an out-of-place upgrade with a double migration

a) Copy the migrateSystem.properties file you created in step 1 to a system that can access the
temporary database.

b) Verify the target, bulkmover, and temporary directory properties.

c) Configure the operations to be performed by the utility as shown below:

pega.move.admin.table=true
 pega.clone.generate.xml=false
 pega.clone.create.ddl=false
 pega.clone.apply.ddl=true
 pega.bulkmover.unload.db=false
 pega.bulkmover.load.db=true
 pega.rules.objects.generate=false
 pega.rule.objects.apply=false

d) Save the properties file.

e) Open a command prompt, and navigate to the scripts directory.

f) Run migrate.bat or ./migrate.sh to import the rules.

Pega Platform writes command-line output to a file in the Pega-image\scripts\logs directory.

Upgrade methods for the migrated rules schema
Use one of these methods to upgrade the migrated rules schema:

• Installation and Upgrade Assistant

• Command line script: upgrade.bat or upgrade.sh

Note: To minimize the time required to upgrade, run the upgrade from the same data center as
the database server.

Upgrading the rules schema by using the Installation and Upgrade
Assistant
For a UI-based upgrade experience, use the Installation and Upgrade Assistant.

Because of the large volume of data, run the IUA on the same network as the database server. If this is
not possible, run the tool on a system with fast, direct access to the database server. The Deployment
user performs these steps.

The upgrade can last for several hours and the time can vary widely based on network proximity to the
database server.

1. Double-click the PRPC_Setup.jar file to start the IUA.

Note: If JAR files are not associated with Java commands on your system, start the IUA from the
command line. Navigate to the directory containing the PRPC_Setup.jar file, and type java -
jar PRPC_Setup.jar.

The IUA loads and the Pega icon is displayed in your task bar.

2. Click Next to display the license agreement.

3. Review the license agreement and click Accept.

4. Optional: If you are resuming after a previous failed upgrade and the Resume Options screen is
displayed, select either Resume or Start Over.

Pega Platform Upgrade Guide | September 27, 2018 | 27

Performing an out-of-place upgrade with a double migration

• If you select Resume, the system uses the previously entered database configuration information to
resume the upgrade from the last successful process. Continue these instructions at step 8.

• If you select Start Over, continue at step 5 to reenter the configuration information.

5. On the Installer Mode screen, choose Upgrade and click Next.

6. Choose your database type and click Next.

7. Configure the database connection. The JDBC drivers allow the Pega Platform application to
communicate with the database. Specify the new rules schema name for both the Rules Schema
Name and Data Schema Name fields. For more information, see Appendix A — Properties files.

Note: Some of the fields on the Database Connection screen are pre-populated based on
the type of database you selected. If you edit these or any other fields on this screen, and then
later decide to change the database type, the IUA might not populate the fields correctly. If this
occurs, enter the correct field values as documented below, or exit and rerun the IUA to select
the intended database type. If you are resuming after a failed upgrade, some pre-populated
values might be disabled.

• JDBC Driver Class Name — Verify that the pre-populated values are correct.

• JDBC Driver JAR Files — Click Select Jar to browse to the appropriate driver files for your database
type and version.

• Database JDBC URL — Verify that the pre-populated value is accurate.

• Database Username and Password — Enter the Deployment user name and password.

• Rules Schema Name — Enter the new rules schema name.

• Data Schema Name — For in-place upgrades, enter the existing data schema name.

• Customer Schema Name — Optional: For in-place upgrades, enter the existing customer data
schema name.

8. Click Test Connection. If the connection is not successful, review your connection information, correct
any errors, and retest. When the connection is successful, click Next to choose how to apply the data
schema.

9. Specify whether you will have your database administrator manually apply the DDL changes to the
schema. These changes include the user-defined functions (UDF) supplied by Pega. By default, the IUA
generates and applies the schema changes to your database.

• To generate and apply the DDL outside the IUA, select Bypass Automatic DDL Application and
continue the deployment. After you complete the deployment, manually generate and apply the
DDL and UDF. For more information, see Optional: Generating and applying DDL and Optional:
Installing user-defined functions.

• To have the IUA automatically apply the DDL changes and the UDF, clear Bypass Automatic DDL
Application.

10. Click Next.

11. Select the upgrade options and click Next:

• Optional: Select Update applications schema. The Update Applications Schema utility updates
all auto-generated tables with the schema changes in the latest base tables. You can also run the
update applications schema utility later from the prpcUtils.bat or prpcUtils.sh script, or from
Dev Studio. For information about using the Update Applications Schema utility, see the online help.

• Optional: Select Run rulebase cleanup to permanently remove old rules. In most cases,
removing older rules improves the general performance of the system. Running the cleanup script
permanently removes rules older than the upgraded version.

Pega Platform Upgrade Guide | September 27, 2018 | 28

Performing an out-of-place upgrade with a double migration

• Optional: Select Update existing applications to modify your existing applications to support the
upgraded version of the Pega Platform. The specific actions depend on your current version of
PRPC. If you do not automatically update the applications as part of the IUA, follow the instructions
in Updating existing applications to update the applications as part of the post-upgrade process.

• Optional: Select Rebuild database indexes to have the IUA to rebuild the database indexes after
the rulebase loads. The IUA rebuilds the database indexes to ensure good performance in the
upgraded system. The amount of time this process adds to the upgrade procedure depends on the
size of your database.

12. Click Start to begin loading the rulebase. During the upgrade, the log window might appear inactive
when the IUA is processing larger files.

13. Click Back to return to the previous screen, and then click Exit to close the IUA.

Pega Platform writes command-line output to a file in the Pega-image\scripts\logs directory.

Upgrading the rules schema from the command line
To use the command line, configure the setupDatabase.properties file and run either upgrade.bat
or upgrade.sh. The Deployment user runs these scripts.

1. If you have not done so already, edit the setupDatabase.properties file.

a) Open the setupDatabase.properties file in the scripts directory of your distribution image:
Directories.distributionDirectory\scripts\setupDatabase.properties

b) Configure the connection properties. Use the temporary upgrade schema name for the rules
schema and data schema names. If your system includes a separate customer data schema,
use the temporary upgrade schema name for the customer data schema too. See Properties file
parameters for more information.

c) Optional: If you are repeating a failed upgrade, configure the resume property:

• To resume the upgrade from the last successful step, set automatic.resume=true.

• To restart the upgrade from the beginning, set automatic.resume=false.

d) Save and close the file.

2. Open a command prompt and navigate to the scripts directory.

3. Run either upgrade.bat or upgrade.sh.

The rulebase upgrade can take several hours, depending on the proximity of the database to the system
running the script and available resources.

Pega Platform writes command-line output to a file in the Pega-image\scripts\logs directory.

Migrating to the new rules schema
Migrate to the new rules schema. Use the migrate.bat or migrate.sh script again for this process,
but with different properties in the migrateSystem.properties file. The Deployment user runs these
scripts.

• If the system can access both databases at the same time, follow the instructions in Migrating to the
new rules schema when the system has access to both databases.

• If there is a firewall or other security restriction and the system can only access one database at a
time, follow the instructions in Migrating to the new rules schema when the system has access to one
database at a time (firewall).

Pega Platform Upgrade Guide | September 27, 2018 | 29

Performing an out-of-place upgrade with a double migration

Note: Pega strongly recommends that you use the migration script. The use of vendor tools to
manage this step is not recommended. If you do not use the migrate script to migrate the schema,
there are additional manual steps required that are not documented here.

This process depends on whether the system has access to both the original and temporary databases at
the same time.

Note: To minimize the time required , run the migration scripts from the same data center as the
database server.

Migrating to the new rules schema when the system has access to both
databases
If your system has access to the temporary and original databases, run the migrate script once to migrate
to the new rules schema.

1. Use a text editor to edit the migrateSystem.properties file in the scripts directory:
Pega-image\scripts\migrateSystem.properties

2. Configure the source properties. For more information, see Migrate script properties.

Connection Information
pega.source.jdbc.driver.jar=full path/DRIVER.jar
pega.source.jdbc.driver.class=database driver class
pega.source.database.type=database vendor type
pega.source.jdbc.url=database URL
pega.source.jdbc.username=Deployment user name
pega.source.jdbc.password=password
pega.source.rules.schema=temporary upgrade schema
pega.source.data.schema=temporary upgrade schema

3. Configure the target properties. See Properties file parameters for more information:

pega.target.jdbc.driver.jar=full path/DRIVER.JAR
pega.target.jdbc.driver.class=database driver class
pega.target.database.type=database vendor type
pega.target.jdbc.url=database URL
pega.target.jdbc.username=Deployment user name
pega.target.jdbc.password=password
pega.target.rules.schema=new rules schema
pega.target.data.schema=original data schema name

Note: If pega.target.data.schema is blank, the rules schema is used by default.

4. Configure the bulkmover directory:
pega.bulkmover.directory=full path to output directory

5. Configure a temporary directory:
pega.migrate.temp.directory=full path to temporary directory

6. If the system has access to both the original and temporary databases, configure the operations to be
performed by the utility as shown below:

pega.move.admin.table=false
pega.clone.generate.xml=true
pega.clone.create.ddl=true
pega.clone.apply.ddl=true

Pega Platform Upgrade Guide | September 27, 2018 | 30

Performing an out-of-place upgrade with a double migration

pega.bulkmover.unload.db=true
pega.bulkmover.load.db=true
pega.rules.objects.generate=true
pega.rules.objects.apply=true

7. Save the properties file.

8. Open a command prompt, and navigate to the scripts directory.

9. Type migrate.bat or ./migrate.sh to run the script.

Pega Platform writes command-line output to a file in the Pega-image\scripts\logs directory.

Migrating to the new rules schema when the system has access to one
database at a time (firewall)
If the system can only access one database at a time (for example, if there is a firewall between the two
servers), run the migration script twice: first on a system that can access the original source database, and
then on a system that can access the temporary target database.

Make sure that the system that accesses the temporary database has access to the bulkmover directory
and the DDL generated from the source database.

1. On a system that can access the original database, export rules from the original database.

a) Use a text editor to edit the migrateSystem.properties file in the scripts directory:
Pega-image\ scripts\migrateSystem.properties

b) Configure the source properties. For more information, see Migrate script properties.

Connection Information
pega.source.jdbc.driver.jar=/path-to-the-database-JAR-file/DRIVER.jar
pega.source.jdbc.driver.class=database driver class
pega.source.database.type=database vendor type
pega.source.jdbc.url=URL of database
pega.source.jdbc.username=Deployment user name
pega.source.jdbc.password=password
pega.source.rules.schema=temporary upgrade schema
pega.source.data.schema=temporary upgrade schema

c) Configure the bulkmover directory:
pega.bulkmover.directory=full path to output directory

d) Configure a temporary directory:
pega.migrate.temp.directory=full path to temporary directory

e) Configure the operations to be performed by the utility as shown below:

pega.move.admin.table=false
pega.clone.generate.xml=true
pega.clone.create.ddl=false
pega.clone.apply.ddl=false
pega.bulkmover.unload.db=true
pega.bulkmover.load.db=false
pega.rules.objects.generate=false
pega.rules.objects.apply=false

f) Save the properties file.

g) Open a command prompt, and navigate to the scripts directory.

Pega Platform Upgrade Guide | September 27, 2018 | 31

Performing an out-of-place upgrade with a double migration

h) Type migrate.bat or ./migrate.sh to export the rules.

2. On a system that can access the temporary database, import the rules to the temporary database.

a) Copy the migrateSystem.properties file you created in step 1 to a system that can access the
temporary database.

b) Verify the target, bulkmover, and temporary directory properties. Set the target rules schema to the
original rules schema:
pega.target.rules.schema=new rules schema name

c) Configure the operations to be performed by the utility as shown below:

pega.admin.table=false
pega.clone.generate.xml=false
pega.clone.create.ddl=true
pega.clone.apply.ddl=true
pega.bulkmover.unload.db=false
pega.bulkmover.load.db=true
pega.rules.objects.generate=true
pega.rules.objects.apply=true

d) Save the properties file.

e) Open a command prompt, and navigate to the scripts directory.

f) Type migrate.bat or ./migrate.sh to import the rules.

Pega Platform writes command-line output to a file in the Pega-image\scripts\logs directory.

Optional: importing applications and other rule
changes for highly available systems
If you plan to import applications or other rule changes in a high available system, doing so during an out-
of-place upgrade rather than after the upgrade improves performance.

1. Open the prpcUtils.properties file in the Pega_HOME\scripts\utils directory.

2. Configure the following property:
import.oop.upgrade=true

3. Save and close the file.

4. Import the application or other rule change. For more information, see the Dev Studio help for import
tools.

Upgrading the data schema
The Deployment user runs a script to upgrade the data schema.

1. If you have not already done so, configure the connection properties. Use your current data
schema name for data.schema.name. Use the new rules schema name for rules.schema.name.
If you have an optional customer data schema separate from the Pega data schema, enter the
customerdata.schema.name. For more information, see Editing the setupDatabase.properties file.

Connection Information
pega.jdbc.driver.jar=/path-to-the-database-JAR-file/DRIVER.jar

Pega Platform Upgrade Guide | September 27, 2018 | 32

Performing an out-of-place upgrade with a double migration

pega.jdbc.driver.class=database driver class
pega.database.type=database vendor type
pega.jdbc.url=URL of the database
pega.jdbc.username=Deployment user name
pega.jdbc.password=password
rules.schema.name=new rules schema
data.schema.name=current data schema
customerdata.schema.name=optional-customer-data-schema

2. Shut down the application server and ensure that no other processes are using the data schema.

3. Open a command prompt, and navigate to the scripts directory.

4. Run upgrade.bat or ./upgrade.sh for Linux, passing in the --dataOnly argument and true
parameter, for example:
upgrade.bat --dataOnly true

Pega Platform writes command-line output to a file in the Pega-image\scripts\logs directory.

Pega Platform Upgrade Guide | September 27, 2018 | 33

Performing an out-of-place upgrade with a single migration

Performing an out-of-place upgrade with a
single migration
Perform an out-of-place upgrade to minimize downtime. Use a single migration if limited server resources
or security features are not an issue. The rules schema upgrade occurs out-of-place, and the data schema
upgrade occurs in place.

Note: To further minimize downtime, use the High Availability features. For more information
about High Availability, see the Pega Platform High Availability Administration Guide.

This upgrade involves three schemas:

• Data schema - your current data schema. This will be your data schema after the upgrade as well.

• Rules schema - your current rules schema. This schema will be replaced after the upgrade.

• Temporary upgrade schema - a temporary schema on the same database used for staging the
upgrade. This will include the rules and data tables during the upgrade and will become the new rules
schema.

The generic process for upgrading a split-schema configuration can be summarized in the following steps:

1. For upgrades to high-availability systems on Pega 7.x, disable rule creation on the rules schema. See
For high availability systems: Disabling rule creation on the rules schema.

Note: During the upgrade, you can still use the original system, but any rules created after the
migration will be lost when you switch to the upgraded rules schema. The data schema retains
all new data and work.

2. Create a new blank rules schema in your existing database. See Create a new rules schema.

3. Migrate only the rules from the current rules schema to the new rules schema. See Migrating the
existing rules schema.

Pega Platform Upgrade Guide | September 27, 2018 | 34

Performing an out-of-place upgrade with a single migration

4. Upgrade the new rules schema. See Upgrade methods for the migrated rules schema.

5. Shut down the existing system.

6. Upgrade the data schema. See Upgrading the data schema.

Pega Platform Upgrade Guide | September 27, 2018 | 35

Performing an out-of-place upgrade with a single migration

For high availability systems: Disabling rule creation on
the rules schema
If you are using the recommended High Availability option, you can disable rule creation on the rules
schema to speed the deployment. If you are not using the High Availability option, skip this section.

Before you deploy, commit all uncommitted hotfixes. After you begin the deployment, ensure that no
changes to the rules, including hotfixes, are applied until after the deployment is complete.

1. Log in as a user with the PegaRULES:HighAvailabilityAdministrator role.

2. Navigate to System > High Availability > HA Cluster Settings.

3. Under Cluster Upgrade, select Cluster Upgrading - Disable saving of rules.

4. Click Submit.

5. Log out.

Create a new rules schema
Create a blank rules schema.

platform="db-Oracle">Create the schema names in all uppercase letters. Oracle requires schema names
to be in all uppercase letters, or the deployment may not work correctly.

Migrating the rules schema with one database
Use the migrate script to migrate the rules tables and other required database objects from the existing
rules schema to the new rules schema. The Deployment user performs the migrations.

Note: Pega strongly recommends that you use the migration script. The use of vendor tools to
manage this step is not recommended. If you do not use the migrate script to migrate the schema,
there are additional manual steps required that are not documented here.

To use the migrate script, complete the following steps:

Note: To minimize the time required, run the migration scripts from the same data center as the
database server.

1. Use a text editor to edit the migrateSystem.properties file in the scripts directory of your
distribution image:
Pega-image\scripts\migrateSystem.properties

2. Configure the source properties. For more information, see Migrate script properties.

Connection Information
pega.source.jdbc.driver.jar=full path/DRIVER.jar
pega.source.jdbc.driver.class=database driver class
pega.source.database.type=database vendor type
pega.source.jdbc.url=URL of database
pega.source.jdbc.username=Deployment user name
pega.source.jdbc.password=password
pega.source.rules.schema=original rules schema name
pega.source.data.schema=original data schema name

Pega Platform Upgrade Guide | September 27, 2018 | 36

Performing an out-of-place upgrade with a single migration

3. Configure the target properties. Leave the target data schema name blank:

pega.target.jdbc.driver.jar=full path/DRIVER.JAR
pega.target.jdbc.driver.class=database driver class
pega.target.database.type=database vendor type
pega.target.jdbc.url=database URL
pega.target.jdbc.username=Deployment user name
pega.target.jdbc.password=password
pega.target.rules.schema=new rules schema

Note: If pega.target.data.schema is blank, the rules schema is used by default.

4. Configure the bulkmover directory.
pega.bulkmover.directory=full path to output directory

5. Configure a temporary directory:
pega.migrate.temp.directory=full path to temporary directory

6. Configure the operations to be performed by the utility as shown below:

pega.move.admin.table=true
pega.clone.generate.xml=true
pega.clone.create.ddl=true
pega.clone.apply.ddl=true
pega.bulkmover.unload.db=true
pega.bulkmover.load.db=true
pega.rules.objects.generate=false
pega.rule.objects.apply=false

7. Save the properties file.

8. Open a command prompt, and navigate to the scripts directory.

9. Type migrate.bat or ./migrate.sh to run the script.

Pega Platform writes command-line output to a file in the Pega-image\scripts\logs directory.

Upgrade methods for the migrated rules schema
Use one of these methods to upgrade the migrated rules schema:

• Installation and Upgrade Assistant

• Command line script: upgrade.bat or upgrade.sh

Note: To minimize the time required to upgrade, run the upgrade from the same data center as
the database server.

Upgrading the rules schema by using the Installation and Upgrade
Assistant
For a UI-based upgrade experience, use the Installation and Upgrade Assistant.

Because of the large volume of data, run the IUA on the same network as the database server. If this is
not possible, run the tool on a system with fast, direct access to the database server. The Deployment
user performs these steps.

Pega Platform Upgrade Guide | September 27, 2018 | 37

Performing an out-of-place upgrade with a single migration

The upgrade can last for several hours and the time can vary widely based on network proximity to the
database server.

1. Double-click the PRPC_Setup.jar file to start the IUA.

Note: If JAR files are not associated with Java commands on your system, start the IUA from the
command line. Navigate to the directory containing the PRPC_Setup.jar file, and type java -
jar PRPC_Setup.jar.

The IUA loads and the Pega icon is displayed in your task bar.

2. Click Next to display the license agreement.

3. Review the license agreement and click Accept.

4. Optional: If you are resuming after a previous failed upgrade and the Resume Options screen is
displayed, select either Resume or Start Over.

• If you select Resume, the system uses the previously entered database configuration information to
resume the upgrade from the last successful process. Continue these instructions at step 8.

• If you select Start Over, continue at step 5 to reenter the configuration information.

5. On the Installer Mode screen, choose Upgrade and click Next.

6. Choose your database type and click Next.

7. Configure the database connection. The JDBC drivers allow the Pega Platform application to
communicate with the database. Specify the new rules schema name for both the Rules Schema
Name and Data Schema Name fields. For more information, see Appendix A — Properties files.

Note: Some of the fields on the Database Connection screen are pre-populated based on
the type of database you selected. If you edit these or any other fields on this screen, and then
later decide to change the database type, the IUA might not populate the fields correctly. If this
occurs, enter the correct field values as documented below, or exit and rerun the IUA to select
the intended database type. If you are resuming after a failed upgrade, some pre-populated
values might be disabled.

• JDBC Driver Class Name — Verify that the pre-populated values are correct.

• JDBC Driver JAR Files — Click Select Jar to browse to the appropriate driver files for your database
type and version.

• Database JDBC URL — Verify that the pre-populated value is accurate.

• Database Username and Password — Enter the Deployment user name and password.

• Rules Schema Name — Enter the new rules schema name.

• Data Schema Name — For in-place upgrades, enter the existing data schema name.

• Customer Schema Name — Optional: For in-place upgrades, enter the existing customer data
schema name.

8. Click Test Connection. If the connection is not successful, review your connection information, correct
any errors, and retest. When the connection is successful, click Next to choose how to apply the data
schema.

9. Specify whether you will have your database administrator manually apply the DDL changes to the
schema. These changes include the user-defined functions (UDF) supplied by Pega. By default, the IUA
generates and applies the schema changes to your database.

• To generate and apply the DDL outside the IUA, select Bypass Automatic DDL Application and
continue the deployment. After you complete the deployment, manually generate and apply the
DDL and UDF. For more information, see Optional: Generating and applying DDL and Optional:
Installing user-defined functions.

Pega Platform Upgrade Guide | September 27, 2018 | 38

Performing an out-of-place upgrade with a single migration

• To have the IUA automatically apply the DDL changes and the UDF, clear Bypass Automatic DDL
Application.

10. Click Next.

11. Select the upgrade options and click Next:

• Optional: Select Update applications schema. The Update Applications Schema utility updates
all auto-generated tables with the schema changes in the latest base tables. You can also run the
update applications schema utility later from the prpcUtils.bat or prpcUtils.sh script, or from
Dev Studio. For information about using the Update Applications Schema utility, see the online help.

• Optional: Select Run rulebase cleanup to permanently remove old rules. In most cases,
removing older rules improves the general performance of the system. Running the cleanup script
permanently removes rules older than the upgraded version.

• Optional: Select Update existing applications to modify your existing applications to support the
upgraded version of the Pega Platform. The specific actions depend on your current version of
PRPC. If you do not automatically update the applications as part of the IUA, follow the instructions
in Updating existing applications to update the applications as part of the post-upgrade process.

• Optional: Select Rebuild database indexes to have the IUA to rebuild the database indexes after
the rulebase loads. The IUA rebuilds the database indexes to ensure good performance in the
upgraded system. The amount of time this process adds to the upgrade procedure depends on the
size of your database.

12. Click Start to begin loading the rulebase. During the upgrade, the log window might appear inactive
when the IUA is processing larger files.

13. Click Back to return to the previous screen, and then click Exit to close the IUA.

Pega Platform writes command-line output to a file in the Pega-image\scripts\logs directory.

Upgrading the rules schema from the command line
To use the command line, configure the setupDatabase.properties file and run either upgrade.bat
or upgrade.sh. The Deployment user runs these scripts.

1. If you have not done so already, edit the setupDatabase.properties file.

a) Open the setupDatabase.properties file in the scripts directory of your distribution image:
Directories.distributionDirectory\scripts\setupDatabase.properties

b) Configure the connection properties. Use the temporary upgrade schema name for the rules
schema and data schema names. If your system includes a separate customer data schema,
use the temporary upgrade schema name for the customer data schema too. See Properties file
parameters for more information.

c) Optional: If you are repeating a failed upgrade, configure the resume property:

• To resume the upgrade from the last successful step, set automatic.resume=true.

• To restart the upgrade from the beginning, set automatic.resume=false.

d) Save and close the file.

2. Open a command prompt and navigate to the scripts directory.

3. Run either upgrade.bat or upgrade.sh.

The rulebase upgrade can take several hours, depending on the proximity of the database to the system
running the script and available resources.

Pega Platform writes command-line output to a file in the Pega-image\scripts\logs directory.

Pega Platform Upgrade Guide | September 27, 2018 | 39

Optional: importing applications and other rule
changes for highly available systems
If you plan to import applications or other rule changes in a high available system, doing so during an out-
of-place upgrade rather than after the upgrade improves performance.

1. Open the prpcUtils.properties file in the Pega_HOME\scripts\utils directory.

2. Configure the following property:
import.oop.upgrade=true

3. Save and close the file.

4. Import the application or other rule change. For more information, see the Dev Studio help for import
tools.

Upgrading the data schema
The Deployment user runs a script to upgrade the data schema.

1. If you have not already done so, configure the connection properties. Use your current data
schema name for data.schema.name. Use the new rules schema name for rules.schema.name.
If you have an optional customer data schema separate from the Pega data schema, enter the
customerdata.schema.name. For more information, see Editing the setupDatabase.properties file.

Connection Information
pega.jdbc.driver.jar=/path-to-the-database-JAR-file/DRIVER.jar
pega.jdbc.driver.class=database driver class
pega.database.type=database vendor type
pega.jdbc.url=URL of the database
pega.jdbc.username=Deployment user name
pega.jdbc.password=password
rules.schema.name=new rules schema
data.schema.name=current data schema
customerdata.schema.name=optional-customer-data-schema

2. Shut down the application server and ensure that no other processes are using the data schema.

3. Open a command prompt, and navigate to the scripts directory.

4. Run upgrade.bat or ./upgrade.sh for Linux, passing in the --dataOnly argument and true
parameter, for example:
upgrade.bat --dataOnly true

Pega Platform writes command-line output to a file in the Pega-image\scripts\logs directory.

Performing an in-place upgrade

Performing an in-place upgrade
Perform an in-place upgrade on systems that do not require minimal downtime.

For more information about in-place and out-of-place upgrades, see In-place or out-of-place upgrades and
single or double data migration

The generic process for performing an in-place upgrade can be summarized in the following steps:

1. Shut down the system.

2. Upgrade the rules schema. See Upgrade methods for the rules schema.

3. Restart the system.

Upgrade methods for the rules schema
Use one of these methods to upgrade the rules schema in place:

• Installation and Upgrade Assistant

• Command line script: upgrade.bat or upgrade.sh

Upgrading the rules schema by using the Installation and Upgrade
Assistant
For a UI-based upgrade experience, use the Installation and Upgrade Assistant.

Because of the large volume of data, run the IUA on the same network as the database server. If this is
not possible, run the tool on a system with fast, direct access to the database server. The Deployment
user performs these steps.

The upgrade can last for several hours and the time can vary widely based on network proximity to the
database server.

1. Double-click the PRPC_Setup.jar file to start the IUA.

Note: If JAR files are not associated with Java commands on your system, start the IUA from the
command line. Navigate to the directory containing the PRPC_Setup.jar file, and type java -
jar PRPC_Setup.jar.

The IUA loads and the Pega icon is displayed in your task bar.

2. Click Next to display the license agreement.

Pega Platform Upgrade Guide | September 27, 2018 | 41

Performing an in-place upgrade

3. Review the license agreement and click Accept.

4. Optional: If you are resuming after a previous failed upgrade and the Resume Options screen is
displayed, select either Resume or Start Over.

• If you select Resume, the system uses the previously entered database configuration information to
resume the upgrade from the last successful process. Continue these instructions at step 8.

• If you select Start Over, continue at step 5 to reenter the configuration information.

5. On the Installer Mode screen, choose Upgrade and click Next.

6. Choose your database type and click Next.

7. Configure the database connection. The JDBC drivers allow the Pega Platform application to
communicate with the database. Specify the new rules schema name for both the Rules Schema
Name and Data Schema Name fields. For more information, see Appendix A — Properties files.

Note: Some of the fields on the Database Connection screen are pre-populated based on
the type of database you selected. If you edit these or any other fields on this screen, and then
later decide to change the database type, the IUA might not populate the fields correctly. If this
occurs, enter the correct field values as documented below, or exit and rerun the IUA to select
the intended database type. If you are resuming after a failed upgrade, some pre-populated
values might be disabled.

• JDBC Driver Class Name — Verify that the pre-populated values are correct.

• JDBC Driver JAR Files — Click Select Jar to browse to the appropriate driver files for your database
type and version.

• Database JDBC URL — Verify that the pre-populated value is accurate.

• Database Username and Password — Enter the Deployment user name and password.

• Rules Schema Name — Enter the new rules schema name.

• Data Schema Name — For in-place upgrades, enter the existing data schema name.

• Customer Schema Name — Optional: For in-place upgrades, enter the existing customer data
schema name.

8. Click Test Connection. If the connection is not successful, review your connection information, correct
any errors, and retest. When the connection is successful, click Next to choose how to apply the data
schema.

9. Specify whether you will have your database administrator manually apply the DDL changes to the
schema. These changes include the user-defined functions (UDF) supplied by Pega. By default, the IUA
generates and applies the schema changes to your database.

• To generate and apply the DDL outside the IUA, select Bypass Automatic DDL Application and
continue the deployment. After you complete the deployment, manually generate and apply the
DDL and UDF. For more information, see Optional: Generating and applying DDL and Optional:
Installing user-defined functions.

• To have the IUA automatically apply the DDL changes and the UDF, clear Bypass Automatic DDL
Application.

10. Click Next.

11. Select the upgrade options and click Next:

• Optional: Select Update applications schema. The Update Applications Schema utility updates
all auto-generated tables with the schema changes in the latest base tables. You can also run the
update applications schema utility later from the prpcUtils.bat or prpcUtils.sh script, or from
Dev Studio. For information about using the Update Applications Schema utility, see the online help.

Pega Platform Upgrade Guide | September 27, 2018 | 42

Performing an in-place upgrade

• Optional: Select Run rulebase cleanup to permanently remove old rules. In most cases,
removing older rules improves the general performance of the system. Running the cleanup script
permanently removes rules older than the upgraded version.

• Optional: Select Update existing applications to modify your existing applications to support the
upgraded version of the Pega Platform. The specific actions depend on your current version of
PRPC. If you do not automatically update the applications as part of the IUA, follow the instructions
in Updating existing applications to update the applications as part of the post-upgrade process.

• Optional: Select Rebuild database indexes to have the IUA to rebuild the database indexes after
the rulebase loads. The IUA rebuilds the database indexes to ensure good performance in the
upgraded system. The amount of time this process adds to the upgrade procedure depends on the
size of your database.

12. Click Start to begin loading the rulebase. During the upgrade, the log window might appear inactive
when the IUA is processing larger files.

13. Click Back to return to the previous screen, and then click Exit to close the IUA.

Pega Platform writes command-line output to a file in the Pega-image\scripts\logs directory.

Upgrading the rules schema in place from the command line
To use the command line, configure the setupDatabase.properties file and run either upgrade.bat
or upgrade.sh. The Deployment user runs these scripts.

1. If you have not done so already, edit the setupDatabase.properties file.

a) Open the setupDatabase.properties file in the scripts directory of your distribution image:
Directories.distributionDirectory\scripts\setupDatabase.properties

b) Configure the connection properties. Use the temporary upgrade schema name for both the rules
schema and data schema names. See Properties file parameters for more information.

c) Optional: If you have a separate customer data schema, set the target schema name:
pega.target.customerdata.schema=current-customer-data-schema

d) Optional: If you are repeating a failed upgrade, configure the resume property:

• To resume the upgrade from the last successful step, set automatic.resume=true.

• To restart the upgrade from the beginning, set automatic.resume=false.

e) Save and close the file.

2. Open a command prompt and navigate to the scripts directory.

3. Run either upgrade.bat or upgrade.sh.

The rulebase upgrade can take several hours, depending on the proximity of the database to the system
running the script.

Pega Platform writes command-line output to a file in the Pega-image\scripts\logs directory.

Pega Platform Upgrade Guide | September 27, 2018 | 43

Post-upgrade configuration

Post-upgrade configuration
This section describes additional tasks to perform after you finish upgrading the system.

Upgrading from PRPC 6.1 SP2 and earlier: updating
ruleset columns
When upgrading from any release prior to PRPC 6.2, you must run additional scripts to update the ruleset
columns.

Depending upon the database platform and the size of the database the script might require significant
time and resources to execute.

1. Navigate to ResourceKit\AdditionalUpgradeScripts and locate the scripts for your database:

• database_rulesetversion_columns_data.sql

• database_rulesetversion_columns_rules.sql

For example, oracle_rulesetversion_columns_data.sql

2. Run the scripts:

• For split schema environments:

• Run database_rulesetversion_columns_data.sql against the data schema.

• Run database_rulesetversion_columns_rules.sql against the rules schema.

• For single schema environments, run both scripts against the single schema.

For Docker, multiple VMs, or multiple NICs: Setting the
public address
If the cluster is set up in Docker, uses separate virtual machines (VMs), or multiple network interfaces
(NICs), set the public address in the prconfig.xml file for each Pega Platform node.

1. Open the prconfig.xml configuration file in the prweb/WEB-INF/classes subdirectory of the
application server directory. For more information, see the Pega Community article How to change
prconfig.xml file settings.

2. Modify the prconfig.xml file. Add the following setting to set the public address:
<env name=" identification/cluster/public/address" value=" IP address " />

For example, if the IP address of the computer on which you run the Pega Platform node is
10.254.34.210, add the following setting:

<env name=" identification/cluster/public/address" value="10.254.34.210" />

The new setting controls the address that is used by the Pega Platform node.

3. Save and close the prconfig.xml file.

4. Repeat steps 1 to 3 for the remaining nodes.

Pega Platform Upgrade Guide | September 27, 2018 | 44

Post-upgrade configuration

Reconfiguring the application server
To use the upgraded rules schema, you must reconfigure the application server. The process is different
for each application server.

Apache Tomcat: Defining default schemas
If you performed an out-of-place upgrade on Apache Tomcat, redefine your default schema names. Define
the default schemas in the context.xml file.

Follow these steps to define the default schemas:

1. Open context.xml.

2. In the <context> element, insert the following lines to define the default schemas. Replace RULES with
your rules schema name and replace DATA with your data schema name. For single-schema systems,
use the rules schema name for both RULES and DATA.

<Environment name="prconfig/database/databases/PegaRULES/defaultSchema"
value="RULES" type="java.lang.String" />
<Environment name="prconfig/database/databases/PegaDATA/defaultSchema"
 value="DATA"
type="java.lang.String" />

3. Optional: If your customer data schema is different than your PegaDATA schema, insert the following
entry to specify the customer data schema name. Replace customer-data-schema with your customer
data schema name.

<Environment name="prconfig/database/databases/CustomerData/defaultSchema"
value="customer-data-schema" type="java.lang.String"/>

4. Save the file.

Redeploying the Pega Platform WAR or EAR file
Remove the existing prweb.war from your application server and deploy the new file.

Do not start the redeployed application while the rulebase deployment is running. By default, your
application server might start the application automatically when they are deployed. If you deploy and
start the application before creating the database, the application generates an error and fail to start. This
error is not harmful, and you can restart the application successfully when the database is available.

Note: When the server restarts after the application deploys, the first node you bring up becomes
the default search node.

Apache Tomcat: Redeploying Pega Platform

1. Make sure that prweb.war or the EAR file for your application server is not running.

2. Remove each of the current versions of the applications.

a) In the Tomcat Web Application Manager page, find the row for each application and select
Undeploy.

b) In the WEBAPPS directory, delete any remaining folders or WAR files.

3. Copy the prweb.war file from the Pega-image\archives\ directory to the Tomcat_home\webapps\
directory.

Pega Platform Upgrade Guide | September 27, 2018 | 45

Post-upgrade configuration

4. Restart the application server.

5. Shut down the server and delete the prweb.war file from the Tomcat_home\webapps\ directory to
prevent Tomcat from redeploying the application each time the server restarts.

6. Verify that any third-party or custom JAR files that you installed with the applications are still in place
on the application server. Restore any JAR files that were deleted when the Pega Platform redeployed.

For upgrades from Pega 7.x: Enabling rule creation on
the production system
If you are upgrading from PRPC 5.x or PRPC 6.x, or if you did not disable rule creation, skip this section.

For upgrades from Pega 7.x, enable rule creation on the production system:

1. Log in as a user with the PegaRULES:HighAvailabilityAdministrator role.

2. Navigate to System > High Availability> HA Cluster Settings.

3. Under Cluster Upgrade, clear Cluster Upgrading - Disable saving of rules.

4. Click Submit.

5. Log out.

Upgrades from 7.2.2 and earlier: Port Apache logging
file customizations to the new logging file
Starting with Pega 7.3, the Pega Platform uses the Apache Log4j 2 logging service. Prior to Pega 7.3,
the Pega Platform used Apache Log4j 1. Because of the change to the logging service, the name of the
logging configuration file has changed from prlogging.xml to prlog4j2.xml and the format has
changed considerably. If you customized your prlogging.xml file, port the customizations to the new
prlog4j2.xml file. If you do not edit the new prlog4j2.xml file, the Pega Platform uses the default
prlog4j2.xml file and disregards your customized prlogging.xml file. For upgrades to systems that
were using the default logging configuration, no changes are needed.

Pega Platform supports all appenders and layouts supported by Apache Log4j 2. The following commonly-
customized appenders define the logging file locations, names, and archiving policy:

• RollingRandomAccessFile – Configures the PegaRULES.log file that includes all logs except alerts

• RollingRandomAccessFileAlert – Configures the PegaRULES-ALERT.log file that includes all
performance alerts

• RollingRandomAccessFileAlertSecurity – Configures the date and time-stamped PegaRULES-
ALERTSECURITY log file that includes all security alerts

For more information about customizing these appenders, see the Apache Log4j 2 documentation.

Restarting Pega Platform
Restarting the Pega Platform

1. Stop and restart the application server.

2. Ensure that the Pega Platform prweb.war or prpc_ *.ear file has started.

3. Access the Pega Platform through a browser. Enter the URL for the Pega Platform application:

Pega Platform Upgrade Guide | September 27, 2018 | 46

Post-upgrade configuration

http:// server:portnumber/context_root

For example: http://prpc-server:8080/prweb

4. Log in as administrator@pega.com.

The What’s New section of the page includes a welcome message and links to application development
tools.

Locking and rolling ruleset versions
If your system includes rule set names using ruleset prerequisite validation instead of application-based
validation, lock your existing ruleset and roll them into new versions before continuing development.
This ensures that future development is based on the upgraded rulesets and that your applications
consistently reference the latest features.

Note: The upgrade process automatically upgrades any prerequisite for Pega-ProCom to the
highest version of the ruleset in the system.

1. In the header of Dev Studio, click Configure > Application > Structure > Referencing Applications.

2. For each application, click Lock and Roll to display the application page.

3. Select + next to Prerequisites to see the ruleset version prerequisites for the application ruleset. Click
the name of the ruleset version to open and modify its rule form.

4. Select the Lock box and select Update my application to include the new ruleset versions.

5. Enter the Password for this ruleset version and select the Roll box.

6. In the Roll to Version field, enter a new ruleset version or accept the default version which increments
the current version by one.

7. In the NEW section of the Prerequisites verify the list of ruleset prerequisites. In particular, verify that
the lowest ruleset points to Pega Platform 8.1.

8. Click Run to apply the changes to your ruleset.

9. Repeat these steps for each application in your system.

Upgrading from Pega 7.1.7 through 7.2.1: Rebuilding
search indexes
Elasticsearch has been updated to version 5.6.9. If you are upgrading from Pega 7.2.2 or higher, no action
is required. You can continue to use your existing search indexes.

If you are upgrading from Pega 7.1.7 through 7.2.1, you must discard your existing indexes and build new
indexes in a new empty index directory. Use the Search landing page or the full text indexer to create the
search indexes. For more information, see the help.

Pega Platform Upgrade Guide | September 27, 2018 | 47

Post-upgrade configuration

Optional: Upgrading from Pega 7.1.6 and earlier:
Configuring the default search nodes and storage
directory
If you are upgrading from Pega 7.1.6 or earlier, you can manually build the Elasticsearch indexes and
configure the search index host node settings to configure the default initial search node and index
storage directory.

Starting in Pega 7.1.7, the underlying platform for full-text search transitioned from Lucene to
Elasticsearch. Elasticsearch provides a more robust, fault-tolerant search capability and does not require
manual configuration of switchover activities. Existing search customizations through Pega Platform APIs
are intact and used exactly the same way with Elasticsearch; only the search query generation changes
from Lucene to Elasticsearch.

Indexing starts when you start the application server. The first node that starts after the deployment
becomes the default initial search node. You can configure a different search node and can also configure
multiple search nodes.

The default index directory is PegaSearchIndex in your temporary directory. The contents of this directory
might be deleted. As a best practice, store your indexes in a more permanent location accessible to all
search nodes.

Follow these steps to build the indexes, configure search nodes, and update the index directory:

1. Check your directory sizes. Ensure that the directories for all Elasticsearch host nodes have sufficient
free space to hold the Elasticsearch indexes.

• Ensure that the host node directories have sufficient free space to hold the Elasticsearch indexes.
Elasticsearch indexes are approximately three times the size of the Lucene indexes.

• Ensure that the directory for the initial host node has sufficient space to initially hold both the
Lucene index and the Elasticsearch index.

2. Use the prpcUtils tool to reindex the rules:

a) On the node that you want to index, open the prpcUtils.properties file in the
Pega_HOME\scripts\utils directory.

b) Configure the connection properties. For more information about parameter values, see Properties
file parameters.

Connection Information
pega.jdbc.driver.jar=/path-to-the-database-JAR-file/DRIVER.jar
pega.jdbc.driver.class=database driver class
pega.database.type=database vendor type
pega.jdbc.url=URL of the database
pega.jdbc.username=Deployment username
pega.jdbc.password=password

c) Optional. Configure a directory to store the new indexes; by default, indexes are created in the
directory specified in the user.temp.dir property.
indexing.indexdirectory=full-path/index/

d) Configure the indexing type parameter in the SETTINGS FOR FULL TEXT INDEXER TOOL section;
leave all other indexing parameters commented out:
indexing.indextype=Rule

e) Save and close the prpcUtils.properties file.

Pega Platform Upgrade Guide | September 27, 2018 | 48

Post-upgrade configuration

f) Run the prpcUtils.bat or prpcUtils.sh script to reindex the rules. For example:
prpcUtils.bat indexing

3. Repeat step 2 to reindex the data files. Set the index type to Data:
indexing.indextype=Data

4. Repeat step 2 to reindex the work files. Set the index type to Work:
indexing.indextype=Work

5. Use Dev Studio to delete the existing index nodes:

a) In the header of Dev Studio, click Configure > System > Settings > Search.

b) Expand Search Index Host Node Setting.

c) Click the X to the right of each node to delete all existing nodes.

d) Click Submit.

6. Use Dev Studio to add the host nodes. The system replicates the indexes on the new nodes.

Note:

• Configure a minimum of two Elasticsearch host nodes. Pegasystems recommends that you
configure a minimum of three nodes for maximum fault tolerance. You might need more
than three nodes depending on the size of your cluster.

• You can specify that a node is either always an index host node or that it never becomes
an index host node even if it is the first node that is started after installation using the -
Dindex.directory JVM setting. To specify that a node is always an index host node specify
the directory name. To specify that a node is never an index host node, leave this setting
blank. For more information about configuring index host nodes, see Managing Elasticsearch
index host nodes outside of the Search landing page on the Pega Community.

a) In the header of Dev Studio, click Configure > System > Settings > Search.

b) Expand Search Index Host Node Setting.

c) Enter the information for the primary host node. The first node you enter is the node on which
Elasticsearch indexes will be built.

• Enter the Search index host node ID on which you built the indexes.

For example:

/dsk01/tomcat7/system7/work/Catalina/localhost/prweb/PegaSearchIndex

• In the Search index file directory, enter the directory in which prpcUtils saved the indexes.

d) Optional: Add any needed additional host nodes.

e) Verify the Search Index Host Node ID and the Search Index File Directory.

f) Expand Automated Search Alerts, and enable Automatically Monitor Files.

g) Click Submit to save the settings.

7. To enable communication between Elasticsearch host nodes in the cluster, open a TCP port in the
range 9300-9399 on each node. (By default, Elasticsearch uses port 9300.) These ports are used for
internal node-to-node communication only, and should not be externally accessible.

Do not stop or bring down the default node until the search indexes build completely. The Search Landing
Page displays the status. After the search indexes are completely built, you can change the default
settings.

Pega Platform Upgrade Guide | September 27, 2018 | 49

Post-upgrade configuration

Final Rules Conflict Report
The Final Rules Conflict Report lists rules in your system that reference Pega rules that have been made
Final in this release. The rules listed vary depending on the specific release from which you are upgrading.

Rules that are marked Final can no longer be overridden. If you have custom rules in your applications
that override default rules and your custom rules are final, your existing rules will continue to execute
correctly. However, you will not be able to modify them after you upgrade to the new RuleSet.

Note: If you modify and try to save a custom rule that overrides a Final rule, validation fails and
you receive an error message. To resolve the conflict, you must delete application rules that
override Final system rules, and replace the functionality in your application with other rules. If you
are unsure how to respond to a Final rule, see the Support area on the Pega Community.

To run the report, select Dev Studio > System > Release > Upgrade > Final Conflicts.

For upgrades from Pega 7.2.2 and earlier: Adopting APIs
and rules for Pega Survey
If you are upgrading from Pega 7.2.2 or earlier, upgrade your application to use the latest survey features.
Skip this section if you are upgrading from a version that is later than Pega 7.2.2, or if your application
does not use Pega Survey.

You cannot revert surveys to their original implementation after you adopt the rules and APIs that are
provided in the Pega-Survey ruleset.

For each application that uses survey capabilities, repeat the following steps:

1. Remove the reference to the legacy PegaSurvey ruleset.

a) In the header of Dev Studio, click [Your application name] > Definition to open the Application
form.

b) In the Application rulesets section, delete the entry for the PegaSurvey ruleset.

c) Click Save.

2. Upgrade your overrides and custom rules that rely on standard rules that have been renamed to find
rules with invalid references.

a) In the header of Dev Studio, click Configure > Application > Tools > Validation.

b) In the Select Application list, select the name of your application.

c) Click Run Validation.

d) Review the list of rules with invalid references, and resolve each invalid reference by performing one
of the following tasks:

• Redirect the invalid reference to a valid rule in the Pega-Survey ruleset.

Because only prefixes were added to the names of standard rules, you can inspect the ruleset for
a rule name that is similar to your invalid reference.

• Recreate your override by copying the renamed version of the rule in the Pega-Survey ruleset.

Ensure that all references to your original override are redirected to your new override, before
you delete the original override.

e) Manually review and upgrade your application for references, such as Java steps in an activity, that
are not detected by the validation tool.

Pega Platform Upgrade Guide | September 27, 2018 | 50

Post-upgrade configuration

3. Upgrade the rules that support the surveys in your application.

a) Click Dev Studio > System > Release > Upgrade > Validate to access tools for validation.

b) Click Revalidate and Save.

c) In the Update Rule Forms dialog box, enter values in the fields to perform validation on the
following classes:

• Rule-PegaQ-Question

• Rule-PegaQ-QuestionCollection

• Rule-PegaQ-QuestionGroup

• Rule-PegaQ-Questionnaire

For more information about the options that you can choose while running the Revalidate and Save
tool, see the Pega Platform help.

4. Find the surveys in your application that run on an embedded page instead of the context, or primary
page, of the parent flow.

a) In the Application Explorer, expand Survey > Survey to display a list of surveys in your application.

b) Click a survey name to open the Survey form.

c) Click Actions > View referencesto find the flow that calls your survey.

d) Click the Open icon next to the flow name.

e) On the flow diagram, inspect the configuration of the Subprocess shape that calls your survey.

f) If the Define flow field is set to On embedded page, note the value in the Page property field.

g) Repeat steps b through f for each survey in your application.

5. Customize the upgrade utility so that it finds and edits the correct pages for in-flight surveys. If you do
not have any surveys that run on embedded pages, you can skip this step.

a) Find the Work-.pyUpgradeSurveyProperties data transform by searching for it or by using the
Application Explorer.

b) Save a copy of the rule to an unlocked ruleset version in your application.

c) On the Definition tab of the Data Transform form, use the Update Page action to set the current
page to the embedded page that you noted from step 4.

d) Enclose the Update Page action with a When action if only some surveys run on the embedded
page.

e) Repeat steps c and d for each embedded page that you noted from step 4.

f) Click Save.

6. Run the upgrade utility for in-flight surveys.

a) Click Dev Studio > System > Release > Upgrade > Upgrade Tools.

b) Click Update Survey Work Objects.

c) In the Upgrade survey work objects dialog box, select the check box next to each class that
defines a survey.

d) Click Run utility.

7. Correct references to deprecated APIs. For more information about deprecated APIs and the APIs that
supersede them, see the release notes for Pega Platform 7.3.

Pega Platform Upgrade Guide | September 27, 2018 | 51

Post-upgrade configuration

Scheduling column population jobs
Upgrading the Pega Platform exposes the pxApplication column on all Work object tables. Because the
expose process may temporarily degrade performance, it is a best practice to schedule this process to run
during off-peak hours.

You can specify a start time for the job and a timeout length. When the job reaches the end of the
timeout, it stops and restarts the next day at the same point. The job continues to recur until all tables are
upgraded. The number of times the job runs depends on the amount of data in your work tables.

Users must have the SysAdm4 role to schedule column population jobs.

1. Configure the start time for the column population:

a. In the Explorer panel, click Records > SysAdm > Agent Schedule.

b. Filter the list. In the Key Contains box at the top of the screen, enter Pega-ImportExport and click
Run.

c. Click any instance of Pega-ImportExport.

Note: You can edit any instance of Pega-ImportExport. Check the NODE NAME field for
information about the node associated with each instance.

d. Click Advanced next to the pxAutomaticColumnPopulation activity line.

e. Enter the start time and schedule for the job and click OK.

f. In the Column Pattern area, select Recurring.

g. Select Enabled.

h. Click Save.

2. Optional: Configure the timeout to set the maximum length of time the column population job will run.

a. In the Explorer panel, click Records > SysAdm > Dynamic System Settings.

b. In the Owning Ruleset field, click the filter icon, enter ImportExport, and click Apply.

c. Double-click AutomaticColumnOptimization/Timeout.

d. Enter the timeout value in minutes.

Note: The default setting is 120 minutes. Change the timeout to reflect the duration of your
off-peak schedule. For example, if your lowest usage occurs from 9 P.M. EST until 4 A.M. EST,
start this job at 9 P.M. and have it run for 420 minutes.

e. Click Save.

Upgrading from Pega 7.2.2 or earlier: Upgrading access
role names to enable notifications
When upgrading from any release prior to Pega 7.2.2, you must upgrade all the user access role names of
an application with specific classes so that users can receive notifications.

Edit the user access role names for these classes:

• Data-Notification-Parameters

• Pega-Notification

• Data-Notification-Recipient

• Data-Preference-Operator

Pega Platform Upgrade Guide | September 27, 2018 | 52

Post-upgrade configuration

To save time, clone any access role name that contains the preceding classes and assign it to application
users instead of updating the access role names manually. For more information on how to clone an
access role name, see the help.

To edit access role names:

1. In the Records Explorer, click Security > Access Role Name.

2. Open the access role name that needs to be edited.

3. Click the Plus icon to open the Add Access Role Object dialog box.

4. In the Class field, enter the class name that you want to add to the access role name.

5. Under Access Control, enter 5 in all the fields to provide access to this access role name.

6. Click Save.

7. Perform steps 3 through 6 for each of the remaining classes.

Upgrades from 7.2.2 and earlier: Enabling access to
environmental information
Prior to Pega 7.3, all roles included access to environmental information for the current node. This
information can include version numbers of third-party platforms and JVM information. This access
appears as a flaw in some security audits. With Pega 7.3, the new @baseclass.pxViewSystemInfo
privilege controls access to environmental information. Only the PegaRULES:SysAdm4 role has this
privilege by default.

After upgrading from Pega 7.2.2 or earlier, add the @baseclass.pxViewSystemInfo privilege to all
system administrator roles that need access to environmental information.

1. In the header of Dev Studio, click Configure > Org & Security > Tools > Security > Role Names.

2. In the pop-up window that displays roles, click the role that you want to edit.

3. In the Dev Studio click the @baseclass class in the Access Class column.

4. In the Privileges section, click the Plus icon and select the pxViewSystemInfo privilege in the Name
column.

5. Enter 5 for the production level in the Level column. Production level 5 provides the highest security.

6. Click Submit.

7. Repeat steps 1 - 6 for each role that requires modification.

Optional: Leveraging the current UI Kit rules
The UI Kit ruleset contains rules and skins that you can use for building or customizing user interfaces
for your applications. Employing the UI Kit ruleset provides you with the latest standard user interface

Pega Platform Upgrade Guide | September 27, 2018 | 53

Post-upgrade configuration

elements, including templates and icons. Add the latest version of the UIKit application as a built-on
application to take advantage of the latest features and styles.

Enabling operators
Pega Platform deployment security requires an administrator to enable new operators shipped with Pega
Platform and requires password changes after the first login.

The administrator and new operators shipped with Pega Platform must change their passwords when
they first log in:

• Batch@pega.com

• DatabaseAdmin@pega.com

• ExternalInviteUser

• IntSampleUser

• PRPC_SOAPOper

• PortalUser@pega.com

• UVUser@pega.com

• External

For more information about changing the administrator password, see Logging in and changing the
administrator password.

1. In the header of Dev Studio, click Configure > Org & Security > Authentication > Operator Access.

2. In the Disabled operators list, click the link for the Pega-provided operator that you want to enable.
The following standard operators are installed but disabled by default. When these standard operators
first log on, they are required to change their passwords. Enable only those operators you plan to use:

• Batch@pega.com

• DatabaseAdmin@pega.com

• ExternalInviteUser

• IntSampleUser

• PRPC_SOAPOper

• PortalUser@pega.com

• UVUser@pega.com

• External

3. On the Edit Operator ID page, on the Security tab, select Force password change on next login and
clear Disable Operator.

4. Select Update password.

5. Enter a password that conforms to your site standards and click Submit.

6. Click Save and close the operator page.

7. Repeat steps 2 through 6 for the remaining operators.

Pega Platform Upgrade Guide | September 27, 2018 | 54

Post-upgrade configuration

Running upgrade utilities
The Pega Platform includes several upgrade utilities to help you to upgrade your application to use new
features. Run all of the upgrade utilities, even though some utilities might not return results for your
application:

1. Log in as the administrative user.

2. In the header of Dev Studio, click Configure > System > Release > Upgrade > Upgrade Tools.

3. Expand General Utilities.

4. Click each utility and then click Run utility.

Cleaning up unused tables
Pegasystems recommends that you drop unused rules tables in the data schema after deploying a split-
schema. If you have only one database, also drop unused data tables in the rules schema.

1. Verify that you have the correct privileges to view and edit the Optimize Schema landing page. Set
these parameters to true:

• ViewAndOptimizeSchema

• Dynamic System Setting (DSS) databases/AutoDBSchemaChanges

2. In the header of Dev Studio, click Configure > System > Database > Optimize Schema.

3. Select the PegaDATA database.

4. Click view the unused tables to display a list of Pega Platform tables without class mappings. Either
select the ones you want to delete and click Proceed with Changes to have Pega Platform drop the
tables, or drop them manually in your database.

5. Repeat steps 3 and 4 for the PegaRULES database.

Upgrading your custom applications
If you did not opt to upgrade your existing applications automatically, Run the Update Existing Application
utility to ensure that your existing applications take advantage of new functionality in Pega Platform.
Run the utility first on your development system and test the changes. Then, run the utility again on the
production system. The specific actions required for your application depend on your current version.

The utility lists the actions that will be performed, the number of records that will be modified, and an
estimate of how long each action will take.

1. In the header of Dev Studio, click Configure > System > Release > Upgrade > Upgrade Existing
Applications.

2. If any actions are listed, click Run to start the utility.

3. Test the application. If the test results are acceptable, repeat these steps on your production system.

Upgrading your application schema
If you did not opt to upgrade your application schema automatically, run the Upgrade Application Schema
utility.

Pega Platform Upgrade Guide | September 27, 2018 | 55

Post-upgrade configuration

1. In the header of Dev Studio, click Configure > System > Release > Upgrade > Upgrade Applications
Schema.

2. If any actions are listed, click Run to start the utility.

3. Test the application. If the test results are acceptable, repeat these steps on your production system.

Review log files
The upgrade creates a series of log files in the Pega-image \scripts\logs directory. After you upgrade,
even if the upgrade is successful, review the log file.

In particular, review the Prebuild Conclusion for messages about conclusions that cannot be built. These
messages do not indicate a problem with the upgrade but rather identify issues with the Pega Platform
application that you must correct.

This is a sample of the Prebuild Conclusions section:

#Prebuild Conclusions:
java] May 1, 2015 1:00:21 PM
 com.pega.pegarules.internal.bootstrap.PRBootstrapDataSource
[java] 19830421: Loading bootstrap properties from file:///e:\temp/
PegaInstallTemp-24-November-2014-11.07.15/prbootstrap.properties
[java] May 1, 2015 1:00:21 PM
 com.pega.pegarules.internal.bootstrap.SettingReaderJNDI
java] 19830421: Could not find java:comp/env/prbootstrap/ in the local JNDI
 context, skipping prconfig setting lookup

Look for any warning or error messages. One common issue is that a conclusion cannot be built because
a class is invalid, for example:

[java] 2015-05-01 13:13:52,911 [STANDARD] [] (ionary.ClassInfoConclusionImpl)
 WARNING -
[java] Unable to initialize a ClassInfoConclusion for PEGACARD-CPM-WORK-
GENERALCUSTOMERCASE, classDef=null, classRule=null

The warning or error message includes information about the invalid class. See the Pega Community for
information. If you cannot resolve the issue, see the Support section of the Pega Community.

Test your applications
The post-upgrade procedures remove the known compatibility issues between Pega Platform and
earlier versions. However, depending on your development methods, you might discover additional
modifications that need to be made in your existing applications when they are upgraded to Pega
Platform. Perform full testing of your application functionality after the upgrade.

Enabling server-side screen captures for application
documents
Regardless of which application server platform you use, you must set up a Tomcat server to support
taking and storing screen captures on a server rather than on a client. By taking and storing screen

Pega Platform Upgrade Guide | September 27, 2018 | 56

Post-upgrade configuration

captures on a server, you avoid client-side limitations, such as browser incompatibilities or client software
requirements.

As a best practice, virtually install Tomcat and deploy the prScreenShot.war file on the same server that
is running Pega Platform. Otherwise, use a standalone Linux or Windows server. If you use a Linux server,
you must include the following components:

• fontconfig

• freetype

• libfreetype.so.6

• libfontconfig.so.1

• libstdc++.so.6

You can include screen captures in an application document that is generated by the Document
Application tool. Screen captures provide stakeholders with a realistic picture of an application's user
interface. Install a PhantomJS REST server to include screen captures in an application document.

1. Download the following WAR file: Pega_DistributionImage\Additional_Products\PhantomJS
\prScreenShot.war

2. Deploy the WAR file on a Tomcat server.

3. Edit the tomcat-users.xml file to add the following role and user. This file is located at \apache-
tomcat-XX\conf\ tomcat-users.xml.
<role rolename="pegascreencapture" /> <user username="restUser" password="rules"
roles="pegascreencapture" />

4. Start the Tomcat server. The service is hosted at http://IPaddress:port/prScreenShot/rest/capture,
where IPaddress is the address of the system where Tomcat is hosted, and port is the port on which the
service is deployed.

5. Log in to your Pega Platform application and make the following changes:

a) Edit the Data-Admin-System-Setting instance Pega-AppDefinition - CaptureScreenshotsResourcePath
with the URL of the service, for example, http://10.224.232.91:8080/prScreenShot/rest/
capture.

b) Add the user that you created in step 3 to the Data-Admin-Security-Authentication profile instance
CaptureScreenshotsAuthProfile.

What to do next: Continue at Configuring PhantomJS REST server security for including screen
captures in an application document.

Configuring PhantomJS REST server security for including screen
captures in an application document
To ensure a secure installation of Pega Platform, enable the PhantomJS REST server to take and store
server-side screen captures. In application documents generated by the Document Application tool,
screen captures provide stakeholders with a realistic picture of the application's user interface.

1. Obtain the SSL certificate from the Pega Platform administrator.

2. Add the SSL certificate to the list of trusted certificates:

a) Double-click the certificate.

b) Click Install certificate to start the Certificate Import wizard.

Pega Platform Upgrade Guide | September 27, 2018 | 57

Post-upgrade configuration

c) Click Next, and select Place all certificates in the following store.

d) Click Browse, select Trusted Root certificate, and click OK.

e) Click Next, and then click Finish to complete the wizard.

3. Add the certificate to the truststore of the JVM on which the REST server is installed:

a) Open a command prompt.

b) Change the root directory to the security folder in the Java installation folder. For example, C:
\Program Files (x86)\Java\jre7\lib\security.

c) Run the following command:
keytool -keystore cacerts -importcert -alias certificate alias -file certificate name

d) When prompted, enter the password for the cacerts keystore. The default password is changeit.

Adding special privileges to access the Requester
Management landing page
To access the Requester Management landing page in your application, you need to add privileges to the
@baseclass and Pega-Landing access classes in your access roles.

Add the following privileges for the type of access that is needed:

• pzSystemOperationsObserver – Required to access the Requester Management landing page and
to view performance and trace entry details.

• pzSystemOperationsAdministrator – Required to access the Requester Management landing page
and perform most actions on requestors. To trace requestors and view the clipboard you also need to
have the pzDebugRemoteRequestor privilege.

To add the privileges, complete the following steps:

1. Click the Operator menu in the Dev Studio header and select Operator.

2. In the Application Access section, expand an access group and click the role that you need to modify.

3. Click the @baseclass class in the Access Class column.

4. In the Privileges section, click the Plus icon and select the appropriate privilege in the Name column.

5. Enter 5 for the production level in the Level column. Production level 5 provides the highest security.

6. Click Submit.

7. Click the Pega-Landing class in the Access Class column and repeat steps 4 through 6.

Note: If the Pega-Landing class is not in the table, add it by clicking the Plus icon at the end of
the table and entering Pega-Landing in the Class field.

8. Save the access role form.

Upgrading from Pega 7.2.2: customizing the agent
schedules for the standard Pega Platform agents
If you developed agent schedules on Pega 7.2.2 with the Node Classification feature, manually edit all
customized schedules for standard Pega 7.2.2 agents. You can update the agent schedules after starting a
node with a node type, when the agent schedule is re-created.

If you did not develop agent schedules with the Node Classification feature of Pega 7.2.2, skip this section.

Pega Platform Upgrade Guide | September 27, 2018 | 58

Post-upgrade configuration

1. In Dev Studio, open the Agent type to customize.

2. In the agent schedule form, modify any settings that need to be updated. For more information, see
the help for the agent schedule data instances.

3. Click Save.

Updating the service email for Pulse email replies
If you have a service email that you created to configure replies to Pulse email notifications, you must
add the Message–ID, In–Reply–To, and References fields to the message header to ensure that these
replies are posted in Pulse. Adding the fields allows the system to interact with email clients by using email
headers when users reply to Pulse emails.

1. Search for the service email that you created to configure replies to Pulse email notifications:

a) Open the Records Explorer.

b) Expand the Integration-Services category and click Service Email.

c) Click the service email that you created for Pulse email replies.

2. In the Message header section on the Request tab of the service email, add the following fields:

Field name Description Map to Map to key

Message–ID Message–ID Clipboard .pyInboundEmail.pyMessageID

In–Reply–To In-Reply–To Clipboard .pyInboundEmail.pyInReplyTo

References References Clipboard .pyInboundEmail.pyReferences

3. Save the service email.

4. Restart the email listener that is configured with the service email.

Pega Platform Upgrade Guide | September 27, 2018 | 59

Appendices

Appendices
The appendices include information about optional processes and troubleshooting.

Migrate script properties
The migrate script, migrate.bat or migrate.sh migrates the rules objects from the existing schema to
a new rules schema, and generates and applies rules schema DDL objects after upgrading the new rules
schema. Edit the migrateSystem.properties file to configure the migrate script. The Deployment user
performs the migrations.

Note: Pega strongly recommends that you use the migrate.bat or migrate.sh script to
perform these steps. The use of vendor tools is not recommended.

The migrate script is designed to automate many aspects of the data movement process, including:

• Export of appropriate tables and data objects from the source system schema;

• Generation and application of DDL to the target system schema;

• Import of appropriate tables and data objects to the target system schema.

Common properties

The following common properties must be configured in the migrateSystem.properties file to log on
to the databases used for each schema. If you are using one database for each schema, these properties
will be the same for each step. However, if you are using different databases for the rules schema and the
temporary upgrade schema, these properties will be different, depending on which database the schema
is hosted on.

The table below lists the common properties, their descriptions, and valid values. Source properties apply
to the system being migrated from, and target properties apply to the system being migrated to. Set the
properties by adding the appropriate value after the equals sign in the properties file. Set the properties
by adding the appropriate value after the equals sign in the properties file.

Property Description

pega.source.jdbc.driver.jar

pega.target.jdbc.driver.jar

The path to the JDBC JAR file. For databases that use multiple
JDBC driver files, specify semicolon-separated values.

pega.source.jdbc.driver.class

pega.target.jdbc.driver.class

Valid values are:

• oracle.jdbc.OracleDriver

pega.source.database.type

pega.target.database.type

The database type:

oracledate

pega.source.jdbc.url

pega.target.jdbc.url

The database connection URL. For more information, see
Obtaining database connection information.

pega.source.jdbc.username

pega.target.jdbc.username

Deployment user name.

pega.source.jdbc.password

pega.target.jdbc.password

Deployment user password.

Custom properties

Pega Platform Upgrade Guide | September 27, 2018 | 60

Appendices

The following properties are used during migration to configure custom settings.

Property Description

pega.source.jdbc.custom.connection.properties

pega.target.jdbc.custom.connection.properties

An optional semi-colon-delimited list of custom connection
properties.

pega.source.data.schema

pega.target.data.schema

pega.source.rules.schema

pega.target.rules.schema

Used to correctly schema-qualify tables in stored procedures,
views and triggers. These properties are not required if
migrating before performing an upgrade.

pega.target.bypass.udf Set this property to bypass UDF generation on the system.

Migration directory properties

Set the directories for migration objects.

Property Description

pega.bulkmover.directory The full path to the directory where output from the bulk
mover will be stored. This directory will be cleared when
pega.bulkmover.load.db is set to true. This property must be set
if either pega.bulkmover.unload.db or pega.bulkmover.load.db
is set to true.

pega.migrate.temp.directory The full path to the temporary directory that is created by the
migrate system utilities.

Operational properties

Use the following properties to migrate Rules objects. Set to true or false.

Property Description

pega.move.admin.table Migrate the admin tables required for an upgrade with the rules
tables.

pega.clone.generate.xml Generate an XML document containing the definitions of tables
in the source system. It will be found in the schema directory of
the distribution image.

pega.clone.create.ddl Create DDL from the generated xml document. This DDL can be
used to create copies of rule tables found on the source system.

pega.clone.apply.ddl Apply the generated clone DDL to the target system.

pega.bulkmover.unload.db Unload the data from the rules tables on the source system into
the pega.bulkmover.directory.

pega.bulkmover.load.db Load the data onto the target system from the
pega.bulkmover.directory.

Rules schema object properties

This table describes operations to run when migrating upgraded rules:

Pega Platform Upgrade Guide | September 27, 2018 | 61

Appendices

Property Description

pega.rules.objects.generate Generate the rules schema objects (views, triggers,
procedures, and functions). The objects will be created in the
pega.target.rules.schema but will contain references to the
pega.target.data.schema where appropriate.

pega.target.bypass.udf Set this property to bypass UDF generation on the system.

pega.rules.objects.apply Apply the rules schema objects (views, triggers, procedures, and
functions) to pega.target.rules.schema.

Editing the setupDatabase.properties file
Edit the setupDatabase.properties file to configure deployment scripts.

Skip this section if your deployment meets all the following criteria:

• You will use the Installation and Upgrade Assistant.

• You will allow the Installation and Upgrade Assistant to automatically apply the schema changes and
do not need to create a DDL file.

• You will not enable Kerberos authentication.

If your deployment does not meet all these criteria, follow the steps in this section to edit the
setupDatabase.properties file. The setupDatabase.properties file controls scripts which perform
the following tasks:

• Upgrade Pega Platform and enable Kerberos authentication. Use the upgrade.bat or upgrade.sh
script.

• Generate a DDL file of schema changes. Use the generateddl.bat or generateddl.sh script. You
can use the generateddl script regardless of whether you use the IUA or the command-line script.

• Generate user-defined functions. Use the generateudf.bat or generateudf.sh script.

1. Open the setupDatabase.properties file in the scripts directory of your distribution image:
Directories.distributionDirectory\scripts\setupDatabase.properties

2. Specify the properties for your system. For each property, add the appropriate value after the equal
sign. See Database connection properties and script arguments.

3. Optional: If you are repeating a failed upgrade, configure the resume property:

• To resume from the last successful step, set automatic.resume=true.

• To restart from the beginning, set automatic.resume=false.

4. Save and close the file.

Database connection properties and script arguments
The database connection properties in the setupDatabase.properties file specify the settings needed
to connect to the database. The script arguments specify the same settings when you use command-line
scripts. Command-line settings override property file settings.

Script argument Property Description

--driverJAR pega.jdbc.driver.jar Path and file name of the JDBC driver.

--driverClass pega.jdbc.driver.class Class of the JDBC driver

Pega Platform Upgrade Guide | September 27, 2018 | 62

Appendices

Script argument Property Description

--dbType pega.database.type Database vendor type. Enter the correct
database vendor:

• Oracle: oracledate

--dbURL pega.jdbc.url The database JDBC URL.

For more information, see Obtaining
database connection information.

--dbUser pega.jdbc.username User name of the Deployment user.

--dbPassword pega.jdbc.password Password of the Deployment user. For
encrypted passwords, leave this blank.

--adminPassword pega.admin.password For new installations only.

--rulesSchema rules.schema.name In a single schema environment, sets rules
schema and data schema.

In a split-schema configuration, sets the
rules schema only.

--dataSchema data.schema.name For split-schema configurations only, sets
the data schema name.

--customerDataSchema customerdata.schema.name An optional customer data schema
separate from the default Pega data
schema.

user.temp.dir Optional: The location of the temp
directory. Set this location to any
accessible location.

For example, C:\TEMP.

--mtSystem multitenant.system Specifies whether this a multitenant
system.

Additional upgrade properties
The properties in the setupDatabase.properties file help you to customize the upgrade.

The following table describes additional properties in the setupDatabase.properties file that you
might need to edit only for upgrades.

Property Description

bypass.pega.schema To bypass both creating the upgrade schema and automatically
generating the user-defined functions, set bypass.pega.schema
to true. This implies that the upgrade DDL is already applied.

To create the upgrade schema and automatically generate the
UDFs, leave this property blank or set it to false.

bypass.udf.generation If you set bypass.pega.schema to false to create the upgrade
schema, but still want to bypass automatically generating the
user-defined functions, set bypass.udf.generation to true.

rebuild.indexes Rebuilds database rules indexes after the rules load to improve
database access performance. If rebuild.indexes=false, you
can rebuild the indexes later by running the stored procedure
SPPR_REBUILD_INDEXES. The amount of time this process adds
to the upgrade depends on the size of your database.

Pega Platform Upgrade Guide | September 27, 2018 | 63

Appendices

Property Description

update.existing.applications Set to true to run the Update Existing Applications utility. Run
the Update Existing Application utility to ensure that your
existing applications take advantage of new functionality in Pega
Platform. Run the utility first on your development system and
test the changes. Then, run the utility again on the production
system. The specific actions required for your application
depend on your current version. You can also run this utility
later from the Dev Studio. The default setting is false.

update.applications.schema Specifies whether to run the Update Applications Schema utility
to upgrade the auto-generated rule, data, work, and work
history tables with the schema changes in the latest base tables
as part of the upgrade.

You can also run this utility later from the prpcUtils.bat or
prpcUtils.sh script, or from Dev Studio. The default setting is
false.

run.ruleset.cleanup Removes older rules. In most cases, removing older rules
improves the general performance of the system. Running
the cleanup script permanently removes rules older than the
upgraded version.

reversal.schema.file.name Schema file name to be used for reversal.

automatic.resume If the upgrade fails, specifies whether the system restarts the
upgrade from the step where the failure occurred. The default
value is true.

Optional: Generating and applying DDL
If you opted not to have the Installation and Upgrade Assistant automatically apply the DDL, generate and
apply the DDL manually.

Manually generating and applying DDL changes must be done in each step of the deployment.
Some steps use the generateddl script. Other steps use the migrate script. These scripts write
platform-specific DDL to a file. You can then view and edit the file or directly apply it by using database
management tools. For detailed instructions, communicate with your database administrator.

The process for generating and applying DDL differs depending on whether you are performing an out-of-
place upgrade or an in-place upgrade.

Generating and applying DDL in an out-of-place upgrade
Use the migrate and generateddl scripts to generate and apply DDL changes as part of an out-of-place
upgrade.

Manually generating and applying DDL changes must be done in each step of the upgrade. Some steps
use the generateddl script. Other steps use the script. These scripts write platform-specific DDL to a file.
You can then view and edit the file or directly apply it by using database management tools. For detailed
instructions, communicate with your database administrator.

This example shows an out-of-place upgrade with double-migration.

1. Optional: If you are upgrading out-of-place, clone the DDL:

a) Clone the DDL. For details about running the migrate script, see Migrate script properties.

1. Edit the migrateSystem.properties file to set the source schema names:

pega.source.rules.schema=original rules schema name
pega.source.jdbc.url=URL of database

Pega Platform Upgrade Guide | September 27, 2018 | 64

Appendices

pega.source.jdbc.username=Deployment user name
pega.source.jdbc.password=password
pega.source.data.schema=original data schema name

2. Edit the migrateSystem.properties file to set the target schema names. The settings depend
on whether you have one database or two databases:

• One database:

pega.target.rules.schema=new rules schema name
pega.target.data.schema=new rules schema name

• Two databases:

pega.target.rules.schema=upgrade schema name
pega.target.data.schema=upgrade schema name

3. Edit the migrateSystem.properties file to create the DDL:

pega.move.admin.table=true
pega.clone.generate.xml=true
pega.clone.create.ddl=true
pega.clone.apply.ddl=false
pega.bulkmover.unload.db=false
pega.bulkmover.load.db=false
pega.rules.objects.generate=false
pega.rules.objects.apply=false

4. Run the migrate.sh or migrate.bat script to create the DDL.

b) Have the database administrator apply the DDL.

c) Populate the tables. For details about running the migrate script, see Migrating the existing rules
schema.

1. Leave the source and target schema properties as in step 1a.

2. Edit the migrateSystem.properties file to populate the table:

pega.move.admin.table=true
pega.clone.generate.xml=false
pega.clone.create.ddl=false
pega.clone.apply.ddl=false
pega.bulkmover.unload.db=true
pega.bulkmover.load.db=true
pega.rules.objects.generate=false
pega.rules.objects.apply=false

3. Run the migrate.sh or migrate.bat script to populate the table.

2. Upgrade the rules schema and apply the DDL for the rule schema changes:

a) Create the DDL of changes to the rules schema.

1. Edit the setupDatabase.properties file to set the rules and data schema names:

• One database:

rules.schema.name=new rules schema name
data.schema.name=new rules schema name

Pega Platform Upgrade Guide | September 27, 2018 | 65

Appendices

• Two databases:

pega.target.rules.schema=upgrade schema name
pega.target.data.schema=upgrade schema name

2. Optional: If your customer data schema is different than your Pega data schema, insert the
following entry to specify the customer data schema name. Replace customer-data-schema with
your customer data schema name.

pega.customerdata.schema=customer-data-schema

3. Run the generateddl.bat or generateddl.sh script.

b) Have the database administrator apply the DDL.

c) Use the command line to upgrade the rules schema.

1. Edit the setupDatabase.properties file to bypass the schema upgrade because the DDL is
already applied: bypass.pega.schema=true

2. Leave the rules and data schema names as in step 2a.

3. Run the upgrade.bat or upgrade.sh script.

3. Migrate the changes to the new rules schema; create rules schema objects, and create links between
the new rules schema and the data schema.

a) Clone the DDL.

1. Edit the migrateSystem.properties file to set the source and target schema properties:

pega.source.rules.schema=upgrade schema name
pega.source.data.schema=upgrade schema name
pega.target.rules.schema=new rules schema
pega.target.data.schema=original data schema

2. Edit the migrateSystem.properties file to create the DDL:

pega.move.admin.table=false
pega.clone.generate.xml=false
pega.clone.create.ddl=true
pega.clone.apply.ddl=false
pega.bulkmover.unload.db=false
pega.bulkmover.load.db=false
pega.rules.objects.generate=false
pega.rules.objects.apply=false

3. Run the migrate.sh or migrate.bat script to create the DDL.

b) Give the DDL to the database administrator to apply.

c) Populate the tables.

1. Leave the source and target schema properties as in step 3a.

2. Edit the migrateSystem.properties file to populate the table:

pega.move.admin.table=false
pega.clone.generate.xml=false
pega.clone.create.ddl=false
pega.clone.apply.ddl=false
pega.bulkmover.unload.db=true
pega.bulkmover.load.db=true
pega.rules.objects.generate=true

Pega Platform Upgrade Guide | September 27, 2018 | 66

Appendices

pega.rules.objects.apply=false

3. Run the migrate.sh or migrate.bat script to populate the table.

d) Give the DDL to the database administrator to apply the rules objects.

4. Upgrade the data schema and apply the DDL for the data schema changes:

a) Create the DDL of changes to the rules schema.

1. Edit the setupDatabase.properties to set the rules and data schema names:

rules.schema.name=new rules schema
data.schema.name=original data schema

2. Optional: If your customer data schema is different than your Pega data schema, insert the
following entry to specify the customer data schema name. Replace customer-data-schema with
your customer data schema name.

pega.customerdata.schema=customer-data-schema

3. Run the generateddl.bat or generateddl.sh script with the --upgradeDataOnly argument
and true parameter, for example: generateddl.bat --upgradeDataOnly true

b) Have the database administrator apply the DDL to the data schema.

c) Use the command line to upgrade the data schema. Follow the instructions in Upgrading the data
schema.

1. Edit the setupDatabase.properties file to bypass the schema upgrade because the DDL is
already applied: bypass.pega.schema=true

2. Run the upgrade.bat or upgrade.sh script with the --dataOnly argument and true parameter,
for example: upgrade.bat --dataOnly true

Generating and applying DDL in an in-place upgrade
Use the migrate and generateddl scripts to generate and apply DDL changes as part of an in-place
upgrade.

Generating the DDL file
Follow these steps to generate a DDL file for your database administrator to apply manually.

1. Edit the setupDatabase.properties file.

a) Configure the connection properties. For more information about parameter values, see Properties
file parameters. The customer data schema is optional.

Connection Information
pega.jdbc.driver.jar=\path-to-the-database-JAR-file\DRIVER.jar
pega.jdbc.driver.class=database driver class
pega.database.type=database vendor type
pega.jdbc.url=URL of the database
pega.jdbc.username=Deployment username
pega.jdbc.password=password
rules.schema.name=rules-schema-name
data.schema.name=data-schema-name
customerdata.schema.name=optional-customer-data-schema

b) Save and close the file.

Pega Platform Upgrade Guide | September 27, 2018 | 67

Appendices

2. At a command prompt, navigate to the Pega-image \scripts directory.

3. Run generateddl.bat or generateddl.sh and pass in the required --action argument:
#generateddl.bat --action upgrade

If you do not specify an output directory, the script writes the output to the default directory: Pega-
image\schema\generated\

Note: The output directory is deleted and re-created each time the generateddl script runs. To
save a copy of the DDL, rename the directory before you run the script.

Applying the DDL file
Before you continue, have your database administrator follow these general steps to apply the schema
changes; these schema changes can include changes to user-defined functions:

1. Review the DDL file in the output directory and make any necessary changes. The default directory is:

Pega-image\schema\generated\database\oracledate>

2. Apply the DDL file.

a) Register the DDL file with the database. Register the .jar file with the database.

b) Apply the CREATE FUNCTION DDL.

The output directory is deleted and re-created each time the generateddl script runs. To save a copy of the
DDL, rename the directory before you rerun the script.

Editing the setupDatabase.properties file to bypass DDL generation
After your database administrator applies the changes to your database, configure the
setupDatabase.properties file to bypass applying a schema that already exists. Reapplying an existing
schema would cause the deployment to fail.

1. Open the setupDatabase.properties file in the scripts directory of your distribution image:
Directories.distributionDirectory\scripts\setupDatabase.properties

2. Set the property bypass.pega.schema=true.

3. Save and close the file.

Installing user-defined functions
The user-defined functions (UDFs) enable the Pega Platform to read data directly from the BLOB without
creating and exposing columns. Skip this section if you installed the UDFs when you deployed Pega
Platform.

There are several ways you might have bypassed generating and installing the UDFs when you deployed:

• Setting either bypass.pega.schema=true or bypass.udf.generation=true in the
setupDatabase.properties file

• Setting pega.target.bypass.udf=true in the migrateSystem.properties file

• Selecting Bypass Automatic DDL Application from the Installation and Upgrade Assistant

Before you install the UDFs, verify that you have the appropriate user permissions.

For more information about user permissions, see your Pega Platform installation guide.

1. Edit the setupDatabase.properties file.

Pega Platform Upgrade Guide | September 27, 2018 | 68

Appendices

a) Configure the connection properties. For more information about parameter values, see Properties
file parameters.

Connection Informationpega.jdbc.driver.jar=\path-to-the-database-JAR-file\DRIVER.jar
pega.jdbc.driver.class=database driver class
pega.database.type=database vendor type
pega.jdbc.url=URL of the database
pega.jdbc.username=Deployment user name
pega.jdbc.password=password
rules.schema.name= rules-schema-name
data.schema.name=data-schema-name

b) Save and close the file.

2. On the rules schema, run the following commands to remove any partially installed UDFs:

DROP FUNCTION rules-schema-name.pr_read_from_stream;
DROP FUNCTION rules-schema-name.pr_read_decimal_from_stream;
DROP FUNCTION rules-schema-name.pr_read_int_from_stream;

3. Optional: If you have a split-schema, on the data schema run the following commands:

DROP FUNCTION data-schema-name.pr_read_from_stream;
DROP FUNCTION data-schema-name.pr_read_decimal_from_stream;
DROP FUNCTION data-schema-name.pr_read_int_from_stream;

4. From the Pega-image \scripts directory, run the generateudf.bat or generateudf.sh script with
the --action install argument.
generateudf.bat --action install --dbType oracledate

Switching to Hazelcast embedded mode from Apache
Ignite client-server mode
If you were using Apache Ignite in client-server mode, you must switch to Hazelcast in embedded mode
because Apache Ignite is no longer supported. You can switch back to embedded mode from client-server
mode during a rolling restart.

Perform a rolling restart to keep your system always available during the upgrade. You remove nodes
from the load balancer, shut them down, upgrade, and start them again one by one. You do not add them
back to the load balancer until you have upgraded half of the nodes.

To perform a rolling restart, complete the following steps.

1. Prepare the database.

a) Disable rule saving. For more information, see Disabling rule creation on the rules schema.

b) Migrate the PegaRULES schema to a temporary schema. For more information, see Migrating the
existing rules schema.

c) Upgrade the new rules schema, for example, a framework or application upgrade. For more
information, see Upgrading the migrated rules schema.

d) Copy the new rule schema to the production database. For more information, see Migrating to the
new rules schema.

2. Upgrade half of the nodes one by one.

Pega Platform Upgrade Guide | September 27, 2018 | 69

Appendices

a) Configure the load balancer to disable a node.

• Disabling the node does not allow new connections, but it allows existing users and services to
complete work.

• Quiescing a Pega Platform node that has not been disabled in the load balancer results in error
conditions for users of that Pega Platform node, because new users cannot log in. The Pega
Platform must be disabled in the load balancer so that new users are redirected to another
active Pega Platform node.

b) Quiesce the Pega Platform node, by using the Autonomic Event Services (AES) or high availability
landing pages. For more information, see the help for Cluster management and quiescing.

c) Ensure that all requestors are passivated and the system run state is set to "Quiesce Complete", by
using the HA Cluster Management landing page.

d) Shut down the node.

e) Upgrade the data source to connect to the upgraded schema (to reflect changes made in step 1).
For more information, see Upgrading the data schema.

f) To switch back to embedded mode from client-server mode, modify the prconfig.xml file and
remove the following settings that were added during the switch to client-server mode.

<env name="cluster/clientserver/clientmode" value="true " />
<env name="identification/cluster/protocol" value="ignite " />

g) Start the node.

3. Perform any needed post-upgrade activities and tests. For more information, see Post-upgrade
configuration.

4. After you upgrade half of the nodes, disable the remaining non-upgraded nodes in the load balancer.

5. Add all of the upgraded nodes that you upgraded in step 3, back to the load balancer to start taking
traffic.

6. Upgrade the remaining half of the nodes (the non-upgraded nodes) one by one.

a) Perform steps 2 b through 3 g.

b) Add the node back to the load balancer to start taking traffic.

7. To switch back to embedded mode from client-server mode, shut down all stand-alone Apache Ignite
servers after all of the nodes are upgraded and no longer use the stand-alone Apache Ignite server
cluster.

Reverse an out-of-place upgrade
You can revert to a previous release after performing an out-of-place upgrade.

Reversing an upgrade requires the original (pre-update) rules schema, which is available only if you
perform an out-of-place upgrade.

Limitations
You can reverse upgrades in many situations, but there are limitations.

Reversing an upgrade is not supported for:

• In-place upgrades

• Single-schema systems

Pega Platform Upgrade Guide | September 27, 2018 | 70

Appendices

• Multitenancy systems

• Multi-hop upgrades: For example,

• You can:

1. Upgrade from Pega 7.2 to 8.1.

2. Reverse the upgrade to return Pega 7.2.

• You cannot:

1. Upgrade from Pega 7.2 to 7.4 (first hop).

2. Upgrade again from Pega 7.4 to 8.1 (second hop).

3. Reverse the upgrade back to Pega 7.2.

Upgrade reversal details
To reverse an upgrade, run the reverse.bat or reverse.sh script on the pre-upgrade rules schema to
revert the changes to the data schema.

Upgrading the data schema creates a Reverse_ timestamp.xml file. The reverse.bat or
reverse.sh script uses the Reverse_ timestamp.xml file to re-create the data schema. If
you upgrade your system more than once, there might be multiple versions of the Reverse_
timestamp.xml file. The setupDatabase.properties file specifies the correct Reverse_
timestamp.xml file.

The reverse process restores database functions, procedures, triggers, and views in the data schema.
New or altered columns, constraints, indexes, and tables are left intact. The process creates the CLI-
Reverse-Log- timestamp.log file in the scripts/logs directory.

If new Data- instances (including Work- instances) are created by using data objects modified by the
upgrade process, the new instances might not function properly after reversal.

The table below describes the reverse behavior for some database objects that are either added or
modified (before or after an upgrade), or added or modified by the product during the upgrade process.

Object Type How created Added or Modified Status after Reversal

Tables, Columns, Indexes -- -- Ignored

Procedures, Triggers, Views Pega Platform shipped Added Dropped

-- Pega Platform shipped Modified Restored

Functions Pega Platform shipped Added Dropped

-- Pega Platform shipped Modified Restored

-- Manually Added Ignored

-- Manually Modified Ignored

Data instances Pega Platform shipped Added Deleted

-- Pega Platform shipped Modified Restored

-- Manually Added Ignored

-- Manually Modified Ignored

Reversing an upgrade
Use a script to reverse an upgrade.

Pega Platform Upgrade Guide | September 27, 2018 | 71

Appendices

1. Check the scripts/log directory for the presence of multiple Reverse_ timestamp.xml files. Note the
file name with the latest time stamp.

2. If you have not done so already, edit the setupDatabase.properties file to configure the reversal.

a) Open the setupDatabase.properties file in the scripts directory of your distribution image:
Directories.distributionDirectory\scripts\setupDatabase.properties

b) Configure the connection properties. For more information about the connection properties, see
Appendix A — Properties files.

Connection Information
pega.jdbc.driver.jar=/path-to-the-database-JAR-file/DRIVER.jar
pega.jdbc.driver.class=database driver class
pega.database.type=database vendor type
pega.jdbc.url=URL of the database
pega.jdbc.username=Deployment user name
pega.jdbc.password=password
rules.schema.name=new-rules-schema-name
data.schema.name=data-schema-name

c) If there are multiple versions of the Reverse_timestamp.xml file, specify the file name from step 1
in the reversal.schema.file.name property, for example:
reversal.schema.file.name=Reverse_2016-06-18-23:59:59.xml

d) Save and close the file.

3. In the scripts directory of the upgrade distribution image, run the generateDDL.bat or
generateDDL.sh script to generate the reverse create and drop statements.

4. In the scripts directory of the upgrade distribution image, run the reverse.bat or reverse.sh
script. If there are any errors, review the information in the scripts\logs\CLI-Reverse-
Log-timestamp.log file.

5. Reconfigure the application server:

a) Restart the application server.

b) Verify that the prweb application is configured to use the correct rules and data schema names.

c) Deploy the prweb application.

6. To verify that the reversal was successful, check the version of Pega Platform on the log-in screen.

Troubleshoot upgrade errors
Use the information in this section to troubleshoot upgrade errors.

Error logs are displayed in the Installation and Upgrade Assistant window and are also stored in the Pega-
image\scripts\logs directory.

Upgrades from PRPC 5.4 and earlier: System-Work-Indexer not found
in dictionary
If you are upgrading from PRPC 5.4 or earlier, an indexing error can cause the upgrade to fail with a class
not defined message.

Class not defined in dictionary: System-Work-Indexer aClassName

Pega Platform Upgrade Guide | September 27, 2018 | 72

Appendices

To fix the problem, first follow the instructions in Upgrading from PRPC 5.4 and earlier: setting indexing,
and then repeat the upgrade.

Resuming or restarting after a failed deployment
If the deployment fails, you can opt to either resume or start over:

• Resume — The system uses the previously-entered configuration information to resume a failed
deployment from the last successful step. This is the default behavior.

• Start Over — The system discards all previously-entered configuration information, drops the
database schema, and starts the deployment from the beginning.

1. Review the failure message for information about the source of the error. Use the information in the
error message to correct the error before you continue.

2. Optional. If you used the IUA, the select either Resume or Start Over when the system displays the
Resume Options screen.

3. Optional. If you used the command-line script, set the automatic.resume property in the
setupDatabase.properties file:

• To resume the deployment from the last successful step, set automatic.resume=true.

• To start over, set automatic.resume=false.

4. Repeat the deployment. Use the same procedure that you used for the initial deployment.

Recovering from a faulty split-schema migration
If the rules schema objects were not applied successfully, run the migration recovery scripts to remove
duplicate rules.

The migration recovery scripts remove duplicate rules created as a result of a faulty split schema
migration, where indexes and primary keys were not created on rules tables. To check for this issue, see if
your rules tables, such as pr4_base and pr4_rule, are missing primary key indexes.

1. Take down any application servers that use the failed schema.

2. Backup your database.

3. In ResourceKit\AdditionalUpgradeScripts\MigrationRecoveryScripts
\database_cleanDups.sql, replace all instances of @RULES_SCHEMA with the name of the schema
that contains the pr4_base table.

4. Use your vendor tools to run the database_cleanDups.sql script on the database.

5. In database_fix_vw_table.sql, replace all instances of @RULES_SCHEMA with the name of the
schema that contains the pr4_base table.

6. Use your vendor tools to run the database_fix_vw_table.sql script on the database.

7. Use the generateddl.bat or generateddl.sh script to generate and apply the DDL. See Optional:
Generating and applying DDL.

8. Use your vendor tools to rebuild the indexes for the tables in your rules schema.

PEGA0055 alert — clocks not synchronized between nodes
The Pega Platform validates time synchronization to ensure proper operations and displays a PEGA0055
alert if clocks are not synchronized between nodes.

For information about how to reference a common time standard, see the documentation for your
operating system.

Pega Platform Upgrade Guide | September 27, 2018 | 73

	Contents
	Overview
	In-place or out-of-place upgrades and single or double data migration

	Plan your deployment
	Environment considerations
	System requirements
	UI-based tool requirements
	Application server requirements
	Database server requirements

	Obtain database connection information
	Node classification in high availability systems

	Prepare your application server
	Commit hotfixes
	Port configuration
	Setting the JVM security parameter for LINUX or UNIX
	Setting Stream nodes for Queue Processor rules in high availability systems

	Preparing your database
	Backing up your system and database
	Verifying that your Oracle database is ready for localization
	Upgrading multitenant systems from Pega 7.1.5 and later
	Upgrading from PRPC 6.1 SP2 and earlier: move system settings
	Database users
	General user permissions
	Oracle user permissions
	Deployment user privileges and roles
	Run-time users — privileges and roles
	Creating Oracle users from an SQL statement
	Creating Oracle users by using the Enterprise Manager

	Performing an out-of-place upgrade with a double migration
	For high availability systems: Disabling rule creation on the rules schema
	Create two new physical schemas on two databases
	Migrating the existing rules schema
	Migrating the rules schema when you have access to both databases
	Migrating the rules schema when you have access to one database

	Upgrade methods for the migrated rules schema
	Upgrading the rules schema by using the Installation and Upgrade Assistant
	Upgrading the rules schema from the command line

	Migrating to the new rules schema
	Migrating to the new rules schema when the system has access to both databases
	Migrating to the new rules schema when the system has access to one database at a time (firewall)

	Optional: importing applications and other rule changes for highly available systems
	Upgrading the data schema

	Performing an out-of-place upgrade with a single migration
	For high availability systems: Disabling rule creation on the rules schema
	Create a new rules schema
	Migrating the rules schema with one database
	Upgrade methods for the migrated rules schema
	Upgrading the rules schema by using the Installation and Upgrade Assistant
	Upgrading the rules schema from the command line

	Optional: importing applications and other rule changes for highly available systems
	Upgrading the data schema

	Performing an in-place upgrade
	Upgrade methods for the rules schema
	Upgrading the rules schema by using the Installation and Upgrade Assistant
	Upgrading the rules schema in place from the command line

	Post-upgrade configuration
	Upgrading from PRPC 6.1 SP2 and earlier: updating ruleset columns
	For Docker, multiple VMs, or multiple NICs: Setting the public address
	Reconfiguring the application server
	Apache Tomcat: Defining default schemas
	Redeploying the Pega Platform WAR or EAR file
	Apache Tomcat: Redeploying Pega Platform

	For upgrades from Pega 7.x: Enabling rule creation on the production system
	Upgrades from 7.2.2 and earlier: Port Apache logging file customizations to the new logging file
	Restarting Pega Platform
	Locking and rolling ruleset versions
	Upgrading from Pega 7.1.7 through 7.2.1: Rebuilding search indexes
	Optional: Upgrading from Pega 7.1.6 and earlier: Configuring the default search nodes and storage directory
	Final Rules Conflict Report
	For upgrades from Pega 7.2.2 and earlier: Adopting APIs and rules for Pega Survey
	Scheduling column population jobs
	Upgrading from Pega 7.2.2 or earlier: Upgrading access role names to enable notifications
	Upgrades from 7.2.2 and earlier: Enabling access to environmental information
	Optional: Leveraging the current UI Kit rules
	Enabling operators
	Running upgrade utilities
	Cleaning up unused tables
	Upgrading your custom applications
	Upgrading your application schema
	Review log files
	Test your applications
	Enabling server-side screen captures for application documents
	Configuring PhantomJS REST server security for including screen captures in an application document

	Adding special privileges to access the Requester Management landing page
	Upgrading from Pega 7.2.2: customizing the agent schedules for the standard Pega Platform agents
	Updating the service email for Pulse email replies

	Appendices
	Migrate script properties
	Editing the setupDatabase.properties file
	Database connection properties and script arguments
	Additional upgrade properties

	Optional: Generating and applying DDL
	Generating and applying DDL in an out-of-place upgrade
	Generating and applying DDL in an in-place upgrade
	Generating the DDL file
	Applying the DDL file

	Editing the setupDatabase.properties file to bypass DDL generation

	Installing user-defined functions
	Switching to Hazelcast embedded mode from Apache Ignite client-server mode
	Reverse an out-of-place upgrade
	Limitations
	Upgrade reversal details
	Reversing an upgrade

	Troubleshoot upgrade errors
	Upgrades from PRPC 5.4 and earlier: System-Work-Indexer not found in dictionary
	Resuming or restarting after a failed deployment
	Recovering from a faulty split-schema migration
	PEGA0055 alert — clocks not synchronized between nodes

